

SESSION: 2022-2023 (EVEN SEMESTER)

I INTERNAL TEST QUESTION PAPER SET-A

Degree Branch B.E

AI & DS

Course Title Duration

Design and Analysis of Algorithms 60 Minutes

USN Semester:

21CS42 Course Code: 26/06/2023

Date:

Max Marks: 20

Q No.	Questions	Marks	K- Level	CO mapping
	PART-A			
1(a)	Outline algorithm. What are the criteria that an algorithm must satisfy?	5 96, . a	Understanding K2	CO1
(b)	 i. List Asymptotic notations in detail with example. ii. Show the general plan for analyzing the efficiency of a recursive algorithm. Write the algorithm to find a factorial of a given number. Derive its efficiency. 	5	Applying K3	CO1
	OR			
2(a)	Explain Tower of Hanoi Recursive algorithm and its complexity.	5	Understanding K2	CO1
(b)	 i. Solve and Prove the following Theorem a. If f1(n)∈O(g1(n)) and f2(n)∈O(g2(n)) then f1(n) + f2(n) ∈ O(max(g1(n), g2(n))) ii. List the following functions according to their order of growth from the lowest to the highest. State proper reasons. a. (n- 2)!,5log(n+100)¹⁰,2²n,0.001n⁴+3n³+1,1n²n,³√n, 3²n. 	5	Applying K3	CO1
27.	PART-B			
3(a)	Demonstrate an algorithm to find uniqueness of elements in an array and give the mathematical analysis of this non recursive algorithm with steps.	5	Applying K3	COI

(b)	Express how quick-sort works to sort an array and trace for the following data set. Draw the tree of recursive calls made. 65 70 75 80 85 60 55 50 45. Derive the best case complexity of quick sort algorithm	5	Applying K3	CO2
	OR			1
4(a)	Illustrate the following problem types. a)Selection Sort b) Sequential Search	5	Applying K3	CO1
(b)	Develop merge sort algorithm and discuss the best-case ,worse complexity and average case efficiency.	5	Applying K3	CO2

HOD

AI & DS

IQAC-Coordinator

Principal Dr. K. RAMA NARASIMHA

Principal/Director

K 8 School of Engineering and Management Bengaluru - 560 109

HOD

Dept. of Artificial Intelligence & Data Science
K.S. School of Engineering & Management
Bangalore - 560 109.

SESSION: 2022-2023 (EVEN SEMESTER)

I INTERNAL TEST QUESTION PAPER SET-B

Degree Branch B.E

Al & DS

Course Title Duration : Design and Analysis of Algorithms

: 60 Minutes

USN

Semester: IV

Course Code: 21CS42

Date: 26/06/2023

Max Marks: 20

Q No.	Questions	Marks	K- Level	CO mapping
	PART-A			
1(a)	Give an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to solve a problem instance	5	Applying K3	CO1
(b)	 i. Outline Asymptotic notations in detail with example. ii. Build the general plan for analyzing time efficiency of recursive algorithms. Model the recursive algorithm to find the factorial of a number. Develop its efficiency 	5	Applying K3	CO1
	· OR			
2(a)	 i. Solve and Prove the Theorem a. If fl(n)εO(gl(n)) and f2(n)εO(g2(n)) then fl(n) + f2(n) ε O(max(gl(n), g2(n))) ii. Demonstrate the algorithm Algorithm S(n) if(n=) return 1 else return (S(n-l)+n*n*n)) a) Identify what does this algorithm? b) Identify the basic operation. c) Identify how many times the basic operation executed? 	5	Applying K3	g CO1

(b)	Write the Tower of Hanoi Recursive algorithm and show its analysis.	5	Applying K3	CO1
	PART-B			
3(a)	Express an algorithm to find uniqueness of elements in an array and give the mathematical analysis of this non recursive algorithm with steps.	5	Applying K3	CO1
(b)	Give an example of a suitable sorting algorithm that uses divide and conquer a technique which divides problem size by considering values in the list. Analyse it for best and worst case efficiencies.	5	Applying K3	CO2
	OR			
4(a)	Develop an algorithm to search an element in an array using Linear (sequential) search. Identify the worst case, best case and average case efficiency of this algorithm.	5	Applying K3	CO1
(b)	Use the following list of elements -15,-6,0,7,9,23,54,82, 101, 112,125,131,131,142,151 Apply Binary search on the elements. Identify average number of comparisons required for successful and unsuccessful search	5	Applying K3	CO2

HOI

AI & DS

IQAC- Coordinator

Principal

Dept. or Artificial Intelligence & Data Science K.S. School of Engineering & Management Bangalore - 560 109.

SESSION: 2022-2023 (EVEN SEMESTER)

П INTERNAL TEST QUESTION PAPER SET-A

Degree

B.E

Branch

AI & DS

Course Title Duration

Design and Analysis of Algorithms

60 Minutes

USN

Semester:

21CS42 Course Code:

10/08/2023 Date:

Max Marks: 20

Q No.	Questions	Marks	K- Level	CO mapping
	PART-A			
1(a)	Develop algorithm for BFS and DFS and apply it on the following graph.	5	Applying K3	CO2
(b)	Solve the following instance of greedy knapsack problem where n=4, m=10, p = (40, 42, 25, 12) and w = (4, 7, 5, 3)	5	Applying K3	CO3
100 TO 10	OR OR			
2(a)	List the three major variation of Decrease and conquer technique? Explain with a example for each.	5	Applying K3	CO2
(b)	Implement Greedy approach to find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.	5	Applying K3	CO3
	PART-B			
3(a)	Develop the algorithm for Insertion Sort and apply it on the following data. 25 15 30 9 99 20 26	5	Applying K3	CO2

(b)	Construct a Characters	A	В	C	D		Gata.			
	Frequency	0.4	0.1	0.2	0.15	0.15	73	5	Applying K3	CO3
	Encode the to			ABA	D and	decode				
						OF	.			<u> </u>
I(a)	List out the a and conquer sorting for th	meth	od an	d illu	strate			\$	Applying K3	CO2
(b)	i. Use Dijkst find single so edge weights ii. Sort the gi 9, 7, 6, 5, 8.	ource are i	short positi	est pa	ath for	a graph C	whose	5	Applying K3	CO3

IQAC- Coordinator

Principal
Dr. K. RAMA NARASIMHA Principal/Director

K S School of Engineering and Manageme Bengaluru - 500 109

HOD

HOD

HOD

Dept. of Artificial Intelligence & Data Science

& Management

K.S. School of Engineering & Management

Bangalore - 560 109.

SESSION: 2022-2023 (EVEN SEMESTER)

II. INTERNAL TEST QUESTION PAPER SET-B

Degree Branch

Course Title

B.E

AI & DS

Design and Analysis of Algorithms Duration 60 Minutes

USN Semester:

Course Code: 21CS42

Date : 10/08/2023

Max Marks: 20

Q No.	Questions									Marks	K- Level	CO mapping
	1						PART-					
(a)	Define topological sorting. Illustrate the topological sorting using DFS method for the following graph.								5	Applying K3	CO2	
(b)	Implement Greedy approach to find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.									5	Applying K3	CO3
				ij.			OR					
l(a)	List the thr technique?	Expl	ain w	ith ar	ı exar	nple fo	r each.		ıer	5	Applying K3	CO2
(b)	i. Write the with deadling 40) and dead sequence of greedy algorii. Construction following d	ne? L dline exec rithm et the	et n= s (3, cution	5, pro 1, 1, 1 n of jo	ofits (2, 2). ob sol	(10, 3, 3 Find o ution u	33, 11, ut the o sing	ptim			Applying K3	CO3
	Characters	a	е	i	0	u	S	t	71	5		
	Frequency	40	15	12	3	4	13	1				

	PART-B			
3(a)	Develop the algorithm for BFS and DFS and apply it on the following graph.	5	Applying K3	CO2
(b)	Use Dijkstra's Algorithm to find out shortest path on the following graph. Write the function for it.		Applying K3	
	10 A B B 6	5		CO3
	OR			
(a)	Develop the algorithm for Insertion Sort and apply it on the following data. 4 3 2 10 12 1 5 6	5	Applying K3	CO2
(b)	Solve the following instance of greedy knapsack problem where n=5, m=6, p = (25, 20, 15,40,50) and w = (3, 2, 1, 4,5)	5	Applying K3	coa

HOD

IQAC- Coordinator

tor Principal

Dr. K. RAMA NARASIMHA

Principal/Director

K S School of Engineering and Management

Bengaluru - 560 109

Dept. of Artificial Intelligence & Data Science
K.S. School of Engineering & Management
Bangalore - 560 109.

SESSION: 2022-2023 (EVEN SEMESTER)

HI INTERNAL TEST QUESTION PAPER SET-A

Degree

B.E

Semester:

Branch

AI & DS

21CS42 Course Code:

Course Title

Design and Analysis of Algorithms

Date: 12/09/2023 Max Marks: 20

60 Minutes Duration

USN

Q No.	Questions	Marks	K- Level	CO mapping
	PART-A			
l(a)	Outline Comparison Counting Sort algorithm and apply for following input.	5	Applying K3	CO4
	62 31 64 50 15		Applying	
(b)	Explain Backtracking method? Draw state space t to generate solution to 4-Queens problem.	ree 5	К3	CO5
	OR			
2(a)	Explain the algorithm to solve multistage graph us backward approach with an example.	ing 5	Applying K3	CO4
(b)	Solve assignment problem for the following job assignment and obtain optimal solution. Job 1 Job 2 Job 3 Job 4 A 9 2 7 8 B 6 4 3 7 C 5 8 1 8 D 7 6 9 4	5	Applying K3	CO5
	PART-B			
3(a)	Explain Bellman ford algorithm. Solve the follow single source shortest problem assuming vertex the source vertex.	ring 1 as	Applying K3	CO4

(b)	What is Hamiltonian cycle? Provide a java code to find Hamiltonian cycle using backtracking technique with example.	5	Applying K3	CO5	
	OR				
4(a)	Make use of Dynamic programming for finding maximum profit in the knapsack problem and solve it. Item={1,2,3,4}, n =4, P = (40, 42, 25, 12), W = (2, 1, 2, 1). W=5	5	Applying K3	CO4	
(b)	Apply Branch and bound algorithm to solve the Travelling Salesperson problem for the following graph	5	Applying K3	C05	

IQAC-Coordinator

Principal

0

HOD

Dept. of Artificial Intelligence & Data Science
K.S. School of Engineering & Management
Bangalore - 560 109.

SESSION: 2022-2023 (EVEN SEMESTER)

III INTERNAL TEST QUESTION PAPER SET-B

Degree

Branch Course Title AI & DS

Duration

Design and Analysis of Algorithms

60 Minutes

USN

Semester:

21CS42 Course Code:

Date : 12/09/2023 20 Max Marks:

Q No.	Questions	Marks	K- Level	CO mapping
	PART-A			
1(a)	Outline Distribution Counting algorithm and apply it for the following input. 13 11 12 13 12 12	5	Applying K3	CO4
(b)	Solve assignment problem for the following job assignment and obtain optimal solution. Job 1 Job 2 Job 3 Job 4 A 9 7 8 8 6 4 3 7 C 5 8 1 8 D 7 6 9 4	5	Applying K3	CO5
	OR			
2(a)	Explain the algorithm to solve multistage graph using forward approach with example.	5	Applying K3	CO4
(b)	Explain Backtracking method? Draw state space tree to generate solution to 4-Queens problem.	5	Applying K3	CO5
	PART-B	1.		
3(a)	Apply Floyd's algorithm to find all pair shortest path for the graph given below with java code.	5	Applying K3	CO4
(b)	Apply Backtracking to solve the instance of the sum of subset problem S={5,10,12,13,15,18} d=30 and outline the java code.	5	Applying	CO5

							К3	
				*	OR			
4(a)	dynamic p	rogramr	ptimal tour ming techni ing edge ler	que for the	15 20 9 10	5	Applying K3	CO4
(b)	Use Branc following	and find	the optimal					
	Items Weights	4	2	5	$\frac{4}{3}$			
	Values	40	42	25	12	5	Applying K3	CO5

IQAC- Coordinator

Principal

Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Managem Bengaluru - 580 109

HOU

Dept. of Artificial Intelligence & Data Scienter.
K.S. School of Engineering & Managementer.
Bangalore - 560 109.