

 Data Structures and Its Applications

Subject Code:18CS32

No. of Lecture Hours/week:4

Total No.of Lecture Hours:50

IA Marks:40 Exam Marks:60

Mrs. Swathi Darla

Assistant Professor

Dept Of CSE

 Module-1

� Data structure is representation of the logical

relationship existing between individual elements of

data.

� In other words, a data structure is a way of organizing

all data items that considers not only the elements

stored but also their relationship to each other.

� Data structure affects the design of both structural &

functional aspects of a program.

Program=algorithm + Data Structure

� You know that a algorithm is a step by step procedure

to solve a particular function.

� That means, algorithm is a set of instruction written

to carry out certain tasks & the data structure is the

way of organizing the data with their logical

relationship retained.

� To develop a program of an algorithm, we should

select an appropriate data structure for that algorithm.

� Therefore algorithm and its associated data structures

from a program.

� Data structure are normally divided into two broad

categories:

◦ Primitive Data Structure

◦ Non-Primitive Data Structure

Float Integer Float

Non-Primitive DS Primitive DS

Data structure

Pointer Character Float Integer

Trees Graph

Non-Linear List

Non-Primitive DS

Linear List

Stack Link List

Queue Array

� There are basic structures and directly operated upon
by the machine instructions.

� In general, there are different representation on
different computers.

� Integer, Floating-point number, Character constants,
string constants, pointers etc, fall in this category.

� There are more sophisticated data structures.

� These are derived from the primitive data structures.

� The non-primitive data structures emphasize on

structuring of a group of homogeneous (same type) or

heterogeneous (different type) data items.

� Lists, Stack, Queue, Tree, Graph are example of non-

primitive data structures.

� The design of an efficient data structure must take

operations to be performed on the data structure.

� The most commonly used operation on data
structure are broadly categorized into following
types:
◦ Create

◦ Selection

◦ Updating

◦ Searching

◦ Sorting

◦ Merging

◦ Destroy or Delete

� A primitive data structure is generally a basic structure

that is usually built into the language, such as an

integer, a float.

� A non-primitive data structure is built out of primitive

data structures linked together in meaningful ways,

such as a or a linked-list, binary search tree, AVL Tree,

graph etc.

� An array is defined as a set of finite number of

homogeneous elements or same data items.

� It means an array can contain one type of data only,

either all integer, all float-point number or all

character.

� Simply, declaration of array is as follows:

int arr[10]

� Where int specifies the data type or type of elements

arrays stores.

� “arr” is the name of array & the number specified

inside the square brackets is the number of elements

an array can store, this is also called sized or length

of array.

� Following are some of the concepts to be remembered
about arrays:

◦ The individual element of an array can be
accessed by specifying name of the array,
following by index or subscript inside square
brackets.
◦ The first element of the array has index

zero[0]. It means the first element and last
element will be specified as:arr[0] & arr[9]
Respectively.

◦ The elements of array will always be stored
in the consecutive (continues) memory
location.

◦ The number of elements that can be stored
in an array, that is the size of array or its
length is given by the following equation:

(Upperbound-lowerbound)+1

◦ For the above array it would be
(9-0)+1=10,where 0 is the lower bound of

array and 9 is the upper bound of array.

◦ Array can always be read or written through
loop. If we read a one-dimensional array it
require one loop for reading and other for
writing the array.

◦ For example: Reading an array

For(i=0;i<=9;i++)

scanf(“%d”,&arr[i]);

◦ For example: Writing an array

For(i=0;i<=9;i++)

printf(“%d”,arr[i]);

◦ If we are reading or writing two-dimensional

array it would require two loops. And

similarly the array of a N dimension would

required N loops.

◦ Some common operation performed on array

are:
🞄 Creation of an array

🞄 Traversing an array

◦ Insertion of new element

◦ Deletion of required element

◦ Modification of an element

◦ Merging of arrays

� A lists (Linear linked list) can be defined as a
collection of variable number of data items.

� Lists are the most commonly used non-primitive data
structures.

� An element of list must contain at least two fields, one
for storing data or information and other for storing
address of next element.

� As you know for storing address we have a special data
structure of list the address must be pointer type.

CCC

� Technically each such element is referred to as a node,

therefore a list can be defined as a collection of nodes

as show bellow:

[Linear Liked List]

Information field Pointer field

BBB AAA

Head

� Types of linked lists:
◦ Single linked list
◦ Doubly linked list
◦ Single circular linked list

◦ Doubly circular linked list

� A stack is also an ordered collection of elements like

arrays, but it has a special feature that deletion and

insertion of elements can be done only from one end

called the top of the stack (TOP)

� Due to this property it is also called as last in first out

type of data structure (LIFO).

� It could be through of just like a stack of plates placed on

table in a party, a guest always takes off a fresh plate

from the top and the new plates are placed on to the stack

at the top.

� It is a non-primitive data structure.

� When an element is inserted into a stack or removed

from the stack, its base remains fixed where the top of

stack changes.

� Insertion of element into stack is called PUSH and

deletion of element from stack is called POP.

� The bellow show figure how the operations take place

on a stack:

PUSH POP

[STACK]

� The stack can be implemented into two ways:

◦ Using arrays (Static implementation)

◦ Using pointer (Dynamic implementation)

� Queue are first in first out type of data structure (i.e.

FIFO)

� In a queue new elements are added to the queue from

one end called REAR end and the element are always

removed from other end called the FRONT end.

� The people standing in a railway reservation row are

an example of queue.

front

� Each new person comes and stands at the end of

the row and person getting their reservation

confirmed get out of the row from the front end.

� The bellow show figure how the operations take

place on a stack:

10 20 30 40 50

rear

� The queue can be implemented into two ways:

◦ Using arrays (Static implementation)

◦ Using pointer (Dynamic implementation)

� A tree can be defined as finite set of data items (nodes).

� Tree is non-linear type of data structure in which data

items are arranged or stored in a sorted sequence.

� Tree represent the hierarchical relationship between

various elements.

� In trees:

� There is a special data item at the top of hierarchy
called the Root of the tree.

� The remaining data items are partitioned into number
of mutually exclusive subset, each of which is itself,
a tree which is called the sub tree.

� The tree always grows in length towards bottom in
data structures, unlike natural trees which grows
upwards.

� The tree structure organizes the data into branches,

which related the information.

A root

B C

D E F G

� Graph is a mathematical non-linear data structure

capable of representing many kind of physical

structures.

� It has found application in Geography, Chemistry and

Engineering sciences.

� Definition: A graph G(V,E) is a set of vertices V and a

set of edges E.

� An edge connects a pair of vertices and many have

weight such as length, cost and another measuring

instrument for according the graph.

� Vertices on the graph are shown as point or circles and

edges are drawn as arcs or line segment.

v2
6

v5

10

v1 8 11

15

v3
9

v4

v1 v3

v2
v4

� Example of graph:

[a] Directed &
Weighted Graph

[b] Undirected Graph

� Types of Graphs:

◦ Directed graph

◦ Undirected graph

◦ Simple graph

◦ Weighted graph

◦ Connected graph

◦ Non-connected graph

� The array as an abstract data type

� Structures and Unions

� The polynomial Abstract Data Type

� The Sparse Matrix Abstract Data Type

� The Representation of Multidimensional
Arrays

� Arrays

◦ Array: a set of pairs, <index, value>

◦ data structure

🞄 For each index, there is a value associated with that
index.

◦ representation (possible)

🞄 Implemented by using consecutive memory.

🞄 In mathematical terms, we call this a correspondence

or a mapping.

� When considering an ADT we are more
concerned with the operations that can be
performed on an array.
◦ Aside from creating a new array, most languages

provide only two standard operations for arrays,
one that retrieves a value, and a second that
stores a value.

◦ Structure 2.1 shows a definition of the array ADT

◦ The advantage of this ADT definition is that it
clearly points out the fact that the array is a
more general structure than “a consecutive set of
memory locations.”

� Arrays in C

◦ int list[5], *plist[5];

◦ list[5]: (five integers) list[0], list[1], list[2], list[3],

list[4]

◦ *plist[5]: (five pointers to integers)
🞄 plist[0], plist[1], plist[2], plist[3], plist[4]

◦ implementation of 1-D array
list[0] base address = 
list[1]  + sizeof(int)
list[2]  + 2*sizeof(int)
list[3]  + 3*sizeof(int)

list[4]  + 4*sizeof(int)

� Arrays in C (cont’d)

◦ Compare int *list1 and int list2[5] in C.
Same: list1 and list2 are pointers.
Difference: list2 reserves five locations.

◦ Notations:
list2 － a pointer to list2[0]
(list2 + i) － a pointer to list2[i] (&list2[i])

*(list2 + i) － list2[i]

� Example:

1- dimension array addressing
◦ int one[] = {0, 1, 2, 3, 4};

◦ Goal: print out address and value
🞄 void print1(int *ptr, int rows){

/* print out a one-dimensional array using a pointer */
int i;
printf(“Address Contents\n”);
for (i=0; i < rows; i++)

printf(“%8u%5d\n”, ptr+i, *(ptr+i));
printf(“\n”);

}

� 2.2.1 Structures (records)

◦ Arrays are collections of data of the same type. In
C there is an alternate way of grouping data that
permit the data to vary in type.
🞄 This mechanism is called the struct, short for structure.

◦ A structure is a collection of data items, where
each item is identified as to its type and name.

� Create structure data type

◦ We can create our own structure data types by
using the typedef statement as below:

🞄 This says that human_being is the name of the type

defined by the structure definition, and we may follow
this definition with declarations of variables such as:

human_being person1, person2;

◦ We can also embed a structure within a structure.

🞄 A person born on February 11, 1994, would have have

values for the date struct set as

◦ A union declaration is similar to a structure.
◦ The fields of a union must share their memory space.
◦ Only one field of the union is “active” at any given time

🞄 Example: Add fields for male and female.

person1.sex_info.sex = male;
person1.sex_info.u.beard = FALSE;

and
person2.sex_info.sex = female;

person2.sex_info.u.children = 4;

� 2.2.3 Internal implementation of structures

◦ The fields of a structure in memory will be stored
in the same way using increasing address
locations in the order specified in the structure
definition.

◦ Holes or padding may actually occur
🞄 Within a structure to permit two consecutive components

to be properly aligned within memory

◦ The size of an object of a struct or union type is
the amount of storage necessary to represent the
largest component, including any padding that
may be required.

a b c

� 2.2.4 Self-Referential Structures

◦ One or more of its components is a pointer to
itself.

◦ typedef struct list {
char data;
list *link;
}

◦ list item1, item2, item3;
item1.data=‘a’;
item2.data=‘b’;
item3.data=‘c’;

Construct a list with three nodes

item1.link=&item2;

item2.link=&item3;

malloc: obtain a node (memory)

free: release memory

item1.link=item2.link=item3.link=NULL;

� Ordered or Linear List Examples

◦ ordered (linear) list: (item1, item2, item3, …,

itemn)

🞄 (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday)

🞄 (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King)

🞄 (basement, lobby, mezzanine, first, second)

🞄 (1941, 1942, 1943, 1944, 1945)

🞄 (a1, a2, a3, …, an-1, an)

� Operations on Ordered List

◦ Finding the length, n , of the list.
◦ Reading the items from left to right (or right to

left).
◦ Retrieving the i’th element.
◦ Storing a new value into the i’th position.
◦ Inserting a new element at the position i , causing

elements numbered i, i+1, …, n to become
numbered i+1, i+2, …, n+1

◦ Deleting the element at position i , causing
elements numbered i+1, …, n to become
numbered i, i+1, …, n-1

� Implementation

◦ sequential mapping (1)~(4)

◦ non-sequential mapping (5)~(6)

� Polynomial examples:

◦ Two example polynomials are:
🞄 A(x) = 3x20+2x5+4 and B(x) = x4+10x3+3x2+1

◦ Assume that we have two polynomials,
A(x) = aixi and B(x) = bixi where x is the variable,
ai is the coefficient, and i is the exponent, then:
🞄 A(x) + B(x) = (ai + bi)xi

🞄 A(x) · B(x) = (aixi · (bjxj))
🞄 Similarly, we can define subtraction and division on

polynomials, as well as many other operations.

� An ADT definition
of a polynomial

� There are two ways to create the type

polynomial in C

� Representation I
◦ define MAX_degree 101 /*MAX degree of polynomial+1*/

typedef struct{

int degree;

float coef [MAX_degree];

}polynomial;
drawback: the first

representation may

waste space.

Polynomial Addition

◦ /* d =a + b, where a, b, and d are polynomials */
d = Zero()
while (! IsZero(a) && ! IsZero(b)) do {

switch COMPARE (Lead_Exp(a), Lead_Exp(b)) {
case -1: d =

Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));
b = Remove(b, Lead_Exp(b));
break;

case 0: sum = Coef (a, Lead_Exp (a)) + Coef (b, Lead_Exp(b));
if (sum) {

Attach (d, sum, Lead_Exp(a));
}

a = Remove(a , Lead_Exp(a));
b = Remove(b , Lead_Exp(b));
break;

case 1: d =
Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a));
a = Remove(a, Lead_Exp(a));

}
}

advantage: easy implementation
disadvantage: waste space when sparse

insert any remaining terms of a or b into d

*Program 2.4 :Initial version of padd function(p.62)

� Representation II
◦ MAX_TERMS 100 /*size of terms array*/

typedef struct{

float coef;

int expon;

}polynomial;

polynomial terms [MAX_TERMS];

int avail = 0;

� Use one global array to store all polynomials

◦ Figure 2.2 shows how these polynomials are stored in

the array terms.

A(x) = 2x1000+1

B(x) = x4+10x3+3x2+1

specification representation
poly <start, finish>
A <0,1>
B <2,5>

storage requirements: start, finish, 2*(finish-start+1)
non-sparse: twice as much as Representation I when all the items are nonzero

� We would now like to
write a C function
that adds two
polynomials,

A and B, represented
as above to obtain D
= A + B.
◦ To produce D(x), padd

(Program 2.5) adds A(x) and
B(x) term by term.

Analysis: O(n+m)

where n (m) is the number
of nonzeros in A (B).

Problem: Compaction is required

when polynomials that are no longer needed.
(data movement takes time.)

� 2.4.1 Introduction

◦ In mathematics, a matrix contains m rows and n
columns of elements, we write mn to designate a
matrix with m rows and n columns.

5*3

15/15 8/36

6*6

sparse matrix
data structure?

� The standard representation of a matrix is a
two dimensional array defined as
a[MAX_ROWS][MAX_COLS].

◦ We can locate quickly any element by writing a[i][j]

� Sparse matrix wastes space

◦ We must consider alternate forms of representation.

◦ Our representation of sparse matrices should store

only nonzero elements.

◦ Each element is characterized by <row, col, value>.

� Structure 2.3
contains our
specification of
the matrix ADT.

◦ A minimal set of
operations
includes matrix
creation,
addition,
multiplication,
and transpose.

� We implement the Create operation as below:

� Figure 2.4(a) shows how the sparse matrix of
Figure 2.3(b) is represented in the array a.

◦ Represented by a two-dimensional array.

◦ Each element is characterized by <row, col, value>.

of rows (col#umofnns)onzero terms

transpose

row, column in
ascending order

� 2.4.2 Transpose a Matrix

◦ For each row i
🞄 take element <i, j, value> and store it in element <j, i, value>

of the transpose.

🞄 difficulty: where to put <j, i, value>
(0, 0, 15) ====> (0, 0, 15)
(0, 3, 22) ====> (3, 0, 22)
(0, 5, -15) ====> (5, 0, -15)
(1, 1, 11) ====> (1, 1, 11)

Move elements down very often.

◦ For all elements in column j,

place element <i, j, value> in element <j, i, value>

.

� This algorithm is incorporated in transpose
(Program 2.7)

columns
elements

Scan the array

“columns” times.

The array has

“elements” elements.

==> O(columns*elements)

� Discussion: compared with 2-D array
representation

◦ O(columns*elements) vs. O(columns*rows)
◦ elements --> columns * rows when non-sparse,

O(columns2*rows)

� Problem: Scan the array “columns” times.

◦ In fact, we can transpose a matrix represented as a
sequence of triples in O(columns + elements) time.

� Solution:

◦ First, determine the number of elements
in each column of the original matrix.

◦ Second, determine the starting positions of each
row
in the transpose matrix.

� Compared with 2-D array representation:
O(columns+elements) vs. O(columns*rows)
elements --> columns * rows O(columns*rows)

Cost:

Additional
row_terms and
starting_pos ar

c
r
o
ay
lu
s
mns

are required. elements
Let the two arrays
row_terms andcolumns
starting_pos be

shared. elements

� After the execution of the third for loop, the

values of row_terms and starting_pos are:

[0] [1] [2] [3] [4] [5]

row_terms = 2 1 2 2 0 1

starting_pos = 1 3 4 6 8 8

transpose

and 0  j <  p.

� 2.4.3 Matrix multiplication

◦ Definition:

Given A and B where A is mn and B is np, the
product matrix D has dimension mp. Its <i, j>
element is

for 0  i < m

◦ Example:

dij 
n1

aikbkj

k 0

used in the polynomial addition

� Sparse Matrix Multiplication

◦ Definition: [D]m*p=[A]m*n* [B]n*p

◦ Procedure: Fix a row of A and find all elements
in column j of B for j=0, 1, …, p-1.

◦ Alternative 1.

Scan all of B to find all elements in j.

◦ Alternative 2.
Compute the transpose of B.

(Put all column elements consecutively)
🞄 Once we have located the elements of row i of A and

column j of B we just do a merge operation similar to that
of 2.2

� General case:

dij=ai0*b0j+ai1*b1j+…+ai(n-1)*b(n-1)j

◦ Array A is grouped by i, and after transpose,
array B is also grouped by j

d Sd

e Se

f Sf

g Sg

The generation at most:
entries ad, ae, af, ag, bd, be, bf, bg, cd, ce, cf, cg

Sc c

Sb b

Sa a

� An Example

A = 1 0 2 BT = 3 -1 0 B = 3 0 2

-1 4 6 0 0 0 -1 0 0

2 0 5 0 0 5

a[0] ro2 c3 va5l bt[0]ro3 c 3 va4l b[0]ro3 c3 va4l
[1] w0 o0l ue1 bt[1]w0 ol0 ue3 b[1]w0 ol0 ue3
[2] 0 2 2 bt[2] 0 1 -1 b[2] 0 2 2
[3] 1 0 -1 bt[3] 2 0 2 b[3] 1 0 -1
[4] 1 1 4 bt[4] 2 2 5 b[4] 2 2 5
[5] 1 2 6

� The programs 2.9 and 2.10 can obtain the product
matrix D which multiplies matrices A and B.

a × b

� Analyzing the algorithm

◦ cols_b * termsrow1 + totalb +
cols_b * termsrow2 + totalb +
… +
cols_b * termsrowp + totalb
= cols_b * (termsrow1 + termsrow2 + … +

termsrowp)+
rows_a * totalb
= cols_b * totala + row_a * totalb

O(cols_b * totala + rows_a * totalb)

� Compared with matrix multiplication using
array
◦ for (i =0; i < rows_a; i++)

for (j=0; j < cols_b; j++) {
sum =0;
for (k=0; k < cols_a; k++)

sum += (a[i][k] *b[k][j]);

}
d[i][j] =sum;

◦ O(rows_a * cols_a * cols_b) vs.
O(cols_b * total_a + rows_a * total_b)

◦ optimal case:
total_a < rows_a * cols_a total_b < cols_a *
cols_b

◦ worse case:
total_a --> rows_a * cols_a, or
total_b --> cols_a * cols_b

the array



� The internal representation of
multidimensional arrays requires more
complex addressing formula.
◦ If an array is declared a[upper0][upper1]…[uppern],

then it is easy to see that the number of

elements in n1

upperi

is:

Where  is thie0
 product of the upperi’s.

◦ Example:
🞄 If we declare a as a[10][10][10], then we require

10*10*10 = 1000 units of storage to hold the array.

� Represent multidimensional arrays:

row major order and column major order.
◦ Row major order stores multidimensional arrays by

rows.
🞄 A[upper0][upper1] as

upper0 rows, row0, row1, …, rowupper0-1,
each row containing upper1 elements.

� Row major order: A[i][j] :  + i*upper1 + j

� Column major order: A[i][j] :  + j*upper0

+ i

col0 col1 colu1-1
row0 A[0][0] A[0][1] . . . A[0][u1-1]

  + u0 +(u1-
1)* u0

row1

A[1][0] A[1][1] . . . A[1][u1-1]

 + u1

rowu0-1

. . .

A[u0-1][0] A[u0-1][1] . . . A[u0-1][u1-1]

+(u0-1)*u1

as the address of a[i][j][k].

� To represent a three-dimensional array,
A[upper0][upper1][upper2], we interpret the
array as upper0 two-dimensional arrays of
dimension upper1upper2.

◦ To locate a[i][j][k], we first obtain  +
i*upper1

*upper2 as the address of a[i][0][0]
because there are i two dimensional arrays of
size upper1*upper2 preceding this element.

◦  + i*upper1*upper2+j *upper2+k

� Generalizing on the preceding discussion, we can
obtain the addressing formula for any element
A[i0][i1]…[in-1] in an n-dimensional array declared
as: A[upper0][upper1]…[uppern-1]

◦ The address for A[i0][i1]…[in-1] is:

2.6.1 Introduction

� The String: component elements are
characters.

◦ A string to have the form, S = s0, …, sn-1, where

si are characters taken from the character set of

the programming language.

◦ If n = 0, then S is an empty or null string.

◦ Operations in ADT 2.4, p. 81

� ADT String:

� In C, we represent strings as character
arrays terminated with the null character \0.

� Figure 2.8 shows how these strings would
be represented internally in memory.

� Now suppose we want to concatenate these
strings together to produce the new string:

◦ Two strings are joined together by strcat(s, t), which stores

the result in s. Although s has increased in length by five,

we have no additional space in s to store the extra five

characters. Our compiler handled this problem inelegantly:

it simply overwrote the memory to fit in the extra five

characters. Since we declared t immediately after s, this

meant that part of the word “house” disappeared.

� C string

functions

� Example 2.2[String insertion]:

◦ Assume that we have two strings, say string 1
and string 2, and that we want to insert string 2
into string 1 starting at the i th position of string
1. We begin with the declarations:

◦ In addition to creating the two strings, we also

have created a pointer for each string.

� Now suppose that the first string contains
“amobile” and the second contains “uto”.

◦ we want to insert “uto”

starting at position 1 of

the first string, thereby

producing the word

“automobile.’

� String insertion function:

◦ It should never be used in practice as it is
wasteful in its use of time and space.

� 2.6.2 Pattern Matching:

◦ Assume that we have two strings, string and pat where pat
is a pattern to be searched for in string.

◦ If we have the following declarations:

◦ Then we use the following statements to determine if pat is

in string:

◦ If pat is not in string, this method has a computing time of

O(n*m) where n is the length of pat and m is the length of
string.

� We can improve on an exhaustive pattern
matching technique by quitting when
strlen(pat) is greater than the number of
remaining characters in the string.

� Example 2.3 [Simulation of nfind]

◦ Suppose pat=“aab”

and

string=“ababbaabaa.”

◦ Analysis of nfind:

The computing time for

these string is linear
in the length of the

string O(m), but the

Worst case is still

O(n.m).

� Ideally, we would like an algorithm that
works in

O(strlen(string)+strlen(pat)) time.This is
optimal for this problem as in the worst
case it is necessary to look at all characters
in the pattern and string at least once.

� Knuth,Morris, and Pratt have developed a
pattern matching algorithm that works in
this way and has linear complexity.

� Suppose pat = “a b c a b c a c a b”

comparing Si+1 and P0.

� From the definition of the failure function, we arrive at
the following rule for pattern matching: if a partial match
is found such that Si-j…Si-1=P0P1…Pj-1 and Si != Pj
then matching may be resumed by comparing Si and Pf(j-
1)+1 if j != 0 .If j= 0, then we may continue by

� This pattern matching rule translates into
function pmatch.

� Analysis of pmatch:

◦ The while loop is iterated until the end of either the

string or the pattern is reached. Since i is never
decreased, the lines that increase i cannot be executed
more than m = strlen(string) times. The resetting of j to
failure[j-1]+1 decreases j++ as otherwise, j falls off the
pattern. Each time the statement j++ is executed, i is
also incremented. So j cannot be incremented more
than m times. Hence the complexity of function pmatch
is O(m) = O(strlen(string)).

◦ If we can compute the failure function in
O(strlen(pat)) time, then the entire pattern
matching process will have a computing time
proportional to the sum of the lengths of the
string and pattern. Fortunately, there is a fast
way to compute the failure function. This is based
upon the following restatement of the failure
function:

� Abstract Data Type as a design tool

� Concerns only on the important concept or
model

� No concern on implementation details.

� Stack & Queue is an example of ADT

� An array is not ADT.

� Stack & Queue vs. Array
◦ Arrays are data storage structures while stacks and

queues are specialized DS and used as
programmer’s tools.

� Stack – a container that allows push and pop

� Queue - a container that allows enqueue and
dequeue

� No concern on implementation details.

� In an array any item can be accessed, while in
these data structures access is restricted.

� They are more abstract than arrays.

� Array is not ADT

� Is Linked list ADT?

� Is Binary-tree ADT?

� Is Hash table ADT?

� What about graph?

� Allows access to only the last item inserted.

� An item is inserted or removed from the stack
from one end called the “top” of the stack.

� This mechanism is called Last-In-First-Out
(LIFO).

A Stack Applet example

http://www2.latech.edu/~box/ds/Stack/Stack.html

� Placing a data item on the top is called
“pushing”, while removing an item from the
top is called “popping” it.

� push and pop are the primary stack
operations.

� Some of the applications are :
microprocessors, some older calculators etc.

� First example stack ADT and implementation

C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\ReaderFiles\Chap04\Stack\stack.ja
va

� push and pop operations are performed in
O(1) time.

� Reversed word

� What is it?

� ABC -> CBA

C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\ReaderFi
les\Chap04\Reverse\reverse.java

� BracketChecker (balancer)

� A syntax checker (compiler) that understands
a language containing any strings with
balanced brackets ‘{‘ ‘[‘ ‘(‘ and ‘)’, ‘]’, ‘}’

◦ S -> Bl S1 Br
◦ S1 -> Bl string Br
◦ Bl -> ‘{‘ | ‘[‘ | ‘(‘
◦ Br -> ‘)’, | ‘]’, | ‘}’
C:\Documents and Settings\box\My

Documents\CS\CSC\220\ReaderPrograms\ReaderFi
les\Chap04\Brackets\brackets.java

� Queue is an ADT data structure similar to stack,
except that the first item to be inserted is the first
one to be removed.

� This mechanism is called First-In-First-Out (FIFO).

� Placing an item in a queue is called “insertion or
enqueue”, which is done at the end of the queue
called “rear”.

� Removing an item from a queue is called “deletion
or dequeue”, which is done at the other end of the
queue called “front”.

� Some of the applications are : printer queue,
keystroke queue, etc.

� When a new item is inserted at the rear, the
pointer to rear moves upwards.

� Similarly, when an item is deleted from the
queue the front arrow moves downwards.

� After a few insert and delete operations the
rear might reach the end of the queue and no
more items can be inserted although the
items from the front of the queue have been
deleted and there is space in the queue.

� To solve this problem, queues implement
wrapping around. Such queues are called
Circular Queues.

� Both the front and the rear pointers wrap
around to the beginning of the array.

� It is also called as “Ring buffer”.

� Items can inserted and deleted from a queue
in O(1) time.

 Queue

-maxSize : int

-queueArray [] : long

-front : int

-rear : int

-nItems : int

 +Queue()

+insert() : void

+remove() : long

+peekFront() : long

+isEmpty() : bool

+isFull() : bool

+size() : int

 Interface1

QueueApp

� C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\Queue\queue.java

� Normal queue (FIFO)

� Circular Queue (Normal Queue)

� Double-ended Queue (Deque)

� Priority Queue

� It is a double-ended queue.

� Items can be inserted and deleted from either
ends.

� More versatile data structure than stack or
queue.

� E.g. policy-based application (e.g. low priority
go to the end, high go to the front)

� In a case where you want to sort the queue
once in a while, What sorting algorithm will
you use?

� More specialized data structure.

� Similar to Queue, having front and rear.

� Items are removed from the front.

� Items are ordered by key value so that the
item with the lowest key (or highest) is always
at the front.

� Items are inserted in proper position to
maintain the order.

� Let’s discuss complexity

 Interface1

PriorityQApp

PrioityQ

-maxSize : int

-queueArray [] : long

-nItems : int

+Queue()

+insert() : void

+remove() : long

+peekMin() : long

+isEmpty() : bool

+isFull() : bool

� Used in multitasking operating system.

� They are generally represented using “heap”
data structure.

� Insertion runs in O(n) time, deletion in O(1)
time.

� C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\PriorityQ\priorityQ.java

� 2 + 3

� 2 + 4 * 5

� ((2 + 4) * 7) + 3* (9 – 5))

� Infix vs postfix

• 2 3 +

• 2 4 5 * +

• 2 4 + 7 * 3 9 5 - * +

� Why do we want to do this
transformation?

� Read ch from input until empty
◦ If ch is arg , output = output + arg
◦ If ch is “(“, push ‘(‘;
◦ If ch is op and higher than top push ch

◦ If ch is “)” or end of input,
🞄 output = output + pop() until empty or top is “(“

◦ Read next input

� C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\Postfix\postfix.java

� 5 + 2 * 3 -> 5 2 3 * +
� Algorithm
◦ While input is not empty
◦ If ch is number , push (ch)
◦ Else

🞄 Pop (a)
🞄 Pop(b)
🞄 Eval (ch, a, b)

� C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\Postfix\postfix.java

Chapter 7: Recursion
23

� Recursion is:
◦ A problem-solving approach, that can ...

◦ Generate simple solutions to ...

◦ Certain kinds of problems that ...

◦ Would be difficult to solve in other ways

� Recursion splits a problem:

◦ Into one or more simpler versions of itself

recursively search eleCmhapteer 7:nRecturssionafter the 8.
24

Strategy for searching a sorted array:

1. if the array is empty

2. return -1 as the search result (not
present)

3. else if the middle element == target

4. return subscript of the middle
element

5. else if target < middle element

6. recursively search elements before
middle

7. else

Chapter 7: Recursion
25

1. if problem is “small enough”

2. solve it directly

3. else

4. break into one or more smaller
subproblems

5. solve each subproblem recursively

6. combine results into solution to whole
problem

Chapter 7: Recursion
26

� At least one “small” case that you can solve
directly

� A way of breaking a larger problem down into:
◦ One or more smaller subproblems

◦ Each of the same kind as the original

� A way of combining subproblem results into an
overall solution to the larger problem

Chapter 7: Recursion
27

� Identify the base case(s) (for direct solution)

� Devise a problem splitting strategy
◦ Subproblems must be smaller

◦ Subproblems must work towards a base case

� Devise a solution combining strategy

Chapter 7: Recursion
28

Recursive algorithm for finding length of a string:

1. if string is empty (no characters)

2. return 0  base case
3. else  recursive case
4. compute length of string without first character

5. return 1 + that length

Note: Not best technique for this problem; illustrates the

approach.

Chapter 7: Recursion
29

Recursive algorithm for finding length of a string:

public static int length (String str) {

if (str == null ||

str.equals(“”))

return 0;

else

return length(str.substring(1)) + 1;

}

Chapter 7: Recursion
30

Recursive algorithm for printing a string:
public static void printChars

(String str) {

if (str == null ||

str.equals(“”))

return;

else

System.out.println(str.charAt(0));

printChars(str.substring(1));

}

Chapter 7: Recursion
31

Recursive algorithm for printing a string?
public static void printChars2

(String str) {

if (str == null ||

str.equals(“”))

return;

else

printChars2(str.substring(1));

System.out.println(str.charAt(0));

}

Chapter 7: Recursion
32

What does this do?

public static int mystery (int n) {

if (n == 0)

return 0;

else

return n + mystery(n-1);

}

Chapter 7: Recursion
33

Recall Proof by Induction:
1. Prove the theorem for the base case(s): n=0

2. Show that:

🞄 If the theorem is assumed true for n,

🞄 Then it must be true for n+1

Result: Theorem true for all n ≥ 0.

Chapter 7: Recursion
34

Recursive proof is similar to induction:
1. Show base case recognized and solved correctly

2. Show that

🞄 If all smaller problems are solved correctly,

🞄 Then original problem is also solved
correctly

3. Show that each recursive case makes progress towards

the base case  terminates properly

Chapter 7: Recursion
35

Overall

result length(“ace”)

3
 return 1 + length(“ce”)

2
 return 1 + length(“e”)

1
return 1 + length(“”)

0

Chapter 7: Recursion
36

� Mathematicians often use recursive definitions

� These lead very naturally to recursive
algorithms

� Examples include:
◦ Factorial

◦ Powers

◦ Greatest common divisor

Chapter 7: Recursion
37

� 0! = 1

� n! = n x (n-1)!

� If a recursive function never reaches its base case,
a stack overflow error occurs

Chapter 7: Recursion
38

public static int factorial (int n) {

if (n == 0) // or: throw exc. if < 0

return 1;

else

return n * factorial(n-1);
}

Chapter 7: Recursion
39

� x0 = 1

� xn = x  xn-1

public static double power

(double x, int n) {

if (n <= 0) // or: throw exc. if < 0
return 1;

else

return x * power(x, n-1);
}

Chapter 7: Recursion
40

Definition of gcd(m, n), for integers m > n > 0:
⚫ gcd(m, n) = n, if n divides m evenly
⚫ gcd(m, n) = gcd(n, m % n), otherwise

public static int gcd (int m, int n) {
if (m < n)

return gcd(n, m);
else if (m % n == 0) // could check n>0

return n;
else

return gcd(n, m % n);

}

Chapter 7: Recursion
41

Definition of fibi, for integer i > 0:

� fib1 = 1

� fib2 = 1

� fibn = fibn-1 + fibn-2, for n > 2

Chapter 7: Recursion
42

public static int fib (int n) {

if (n <= 2)

return 1;

else

return fib(n-1) + fib(n-2);
}

This is straightforward, but an inefficient
recursion ...

Chapter 7: Recursion
43

calls apparently

O(2n) – big!

Chapter 7: Recursion
44

public static int fibStart (int n) {

return fibo(1, 0, n);

}

private static int fibo (
int curr, int prev, int n) {

if (n <= 1)

return curr;

else

return fibo(curr+prev, curr, n-1);
}

Chapter 7: Recursion
45

Performance is O(n)

Chapter 7: Recursion
46

� Towers of Hanoi

� Counting grid squares in a blob

� Backtracking, as in maze search

Chapter 7: Recursion
47

Goal: Move entire tower to another peg

Rules:

1. You can move only the top disk from a peg.

2. You can only put a smaller on a larger disk
(or on an empty peg)

Chapter 7: Recursion
48

Chapter 7: Recursion
49

Chapter 7: Recursion
50

Chapter 7: Recursion
51

Chapter 7: Recursion
52

move(n, src, dst, tmp) =

if n == 1: move disk 1 from src to dst

otherwise:

move(n-1, src, tmp, dst)

move disk n from src to dst

move(n-1, tmp, dst, src)

Chapter 7: Recursion
53

public class TowersOfHanoi {
public static String showMoves(int n,

char src, char dst, char tmp) {

if (n == 1)
return “Move disk 1 from “ + src +

“ to “ + dst + “\n”;

else return
showMoves(n-1, src, tmp, dst) +

“Move disk “ + n + “ from “ + src +

“ to “ + dst + “\n” +

showMoves(n-1, tmp, dst, src);

}

}

terminate. Chapter 7: Recursion
54

How big will the string be for a tower of size n?

We’ll just count lines; call this L(n).

� For n = 1, one line: L(1) = 1

� For n > 1, one line plus twice L for next smaller
size:
L(n+1) = 2 x L(n) + 1

Solving this gives L(n) = 2n – 1 = O(2n)

So, don’t try this for very large n – you will do a
lot of string concatenation and garbage
collection, and then run out of heap space and

� Linked lists
◦ Abstract data type (ADT)

� Basic operations of linked lists
◦ Insert, find, delete, print, etc.

� Variations of linked lists
◦ Circular linked lists

◦ Doubly linked lists

node

A

data pointer



Head

� A linked list is a series of connected nodes

� Each node contains at least
◦ A piece of data (any type)

◦ Pointer to the next node in the list

� Head: pointer to the first node

� The last node points to NULL

C B A

� We use two classes: Node and List

� Declare Node class for the nodes

◦ data: double-type data in this example

◦ next: a pointer to the next node in the list

class Node {

public:

double data; // data

Node* next; // pointer to next

};

� Declare List, which contains

◦ head: a pointer to the first node in the list.
Since the list is empty initially, head is set to NULL

◦ Operations on List

class List {

public:

List(void) { head = NULL; } // constructor

~List(void); // destructor

bool IsEmpty() { return head == NULL; }

Node* InsertNode(int index, double x);

int FindNode(double x);

int DeleteNode(double x);

void DisplayList(void);

private:

Node* head;

};

� Operations of List
◦ IsEmpty: determine whether or not the list is empty

◦ InsertNode: insert a new node at a particular

position

◦ FindNode: find a node with a given value

◦ DeleteNode: delete a node with a given value

◦ DisplayList: print all the nodes in the list

e

� Node* InsertNode(int index, double x)

◦ Insert a node with data equal to x after the index’th

elements. (i.e., when index = 0, insert the node as the first element;

when index = 1, insert the node after the first element, and so on)

◦ If the insertion is successful, return the inserted node.

Otherwise, return NULL.
(If index is < 0 or > length of the list, the insertion will fail.)

� Steps
1. Locate index’th element

2. Allocate memory for the new node

3. Point the new node to its successor

index’th

element

4. Point the new node’s predecessor to the new nod

newNode

� Possible cases of InsertNode
1. Insert into an empty list

2. Insert in front

3. Insert at back

4. Insert in middle

� But, in fact, only need to handle two cases
◦ Insert as the first node (Case 1 and Case 2)

◦ Insert in the middle or at the end of the list (Case 3

and Case 4)

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

Try to locate
index’th node. If it

doesn’t exist,
return NULL.

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head;

head = newNode;

}

else {

}

newNode->next = currNode->next;

currNode->next = newNode;

return newNode;

}

}

else {

newNode->next =

currNode->next =

currNode->next;

newNode;

}

return newNode;

}

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head;

head = newNode;
Create a new node

}

else {

newNode->next =

currNode->next =

currNode->next;

newNode;
newNode

}

return newNode;

}

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Insert as first element

head

Node* newNode

newNode->data

if (index == 0

=

=

) {

new

x;

Node;

newNode->next = head;

head = newNode;

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode =

currIndex++;

}

if (index > 0 && currNode

==

currNode->next;

NULL) return NULL;

Node* newNode

newNode->data

=

=

new

x;

Node;

if (index == 0) {

newNode->next = head;

head = newNode;

}

else {

currNode

newNode->next = currNode->next;

currNode->next = newNode;

}

return newNode;

}

newNode

Insert after currNode

return 0;

}

� int FindNode(double x)

◦ Search for a node with the value equal to x in the list.

◦ If such a node is found, return its position. Otherwise,
return 0.

int List::FindNode(double x) {

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

currNode = currNode->next;

currIndex++;

}

if (currNode) return currIndex;

� int DeleteNode(double x)

◦ Delete a node with the value equal to x from the list.

◦ If such a node is found, return its position. Otherwise,
return 0.

� Steps

◦ Find the desirable node (similar to FindNode)

◦ Release the memory occupied by the found node

◦ Set the pointer of the predecessor of the found node to
the successor of the found node

� Like InsertNode, there are two special cases

◦ Delete first node

◦ Delete the node in middle or at the end of the list

int List::DeleteNode(double x) {

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

}

head = currNode->next;

delete currNode;

return currIndex;

}

return 0;

}

 Try to find the node with
Node* prevNode = NULL;

Node* currNode = head;
int currIndex = 1;

its value equ al to x

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

prevNode currNode

if (currNode) {

if (prevNode) {

prevNode->next =

delete currNode;

currNode->next;

}

else {

}

head = currNode->next;

delete currNode;

return currIndex;

}

return 0;

}

int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

head currNode

}

� void DisplayList(void)

◦ Print the data of all the elements

◦ Print the number of the nodes in the list

void List::DisplayList()

{

int num = 0;

Node* currNode = head;

while (currNode != NULL){

cout << currNode->data << endl;

currNode = currNode->next;

num++;

}

cout << "Number of nodes in the list: " << num << endl;

}

� ~List(void)

◦ Use the destructor to release all the memory used by the
list.

◦ Step through the list and delete each node one by one.

List::~List(void) {

Node* currNode = head, *nextNode = NULL;

while (currNode != NULL)

{

nextNode = currNode->next;

// destroy the current node

delete currNode;

currNode = nextNode;

}

}

6

7 result
5

int main(void)

{

List list;

Number of nodes in the list: 3

5.0 found

4.5 not found

6

5

Number of nodes in the list: 2

list.InsertNode(0, 7.0); // successful

list.InsertNode(1, 5.0); // successful

list.InsertNode(-1, 5.0); // unsuccessful

list.InsertNode(0, 6.0); // successful

list.InsertNode(8, 4.0); // unsuccessful

// print all the elements

list.DisplayList();

if(list.FindNode(5.0) > 0) cout << "5.0 found" << endl;

else cout << "5.0 not found" << endl;

if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl;

else cout << "4.5 not found" << endl;

list.DeleteNode(7.0);

list.DisplayList();

return 0;

}

C B A

� Circular linked lists

◦ The last node points to the first node of the list

Head

◦ How do we know when we have finished
traversing the list? (Tip: check if the pointer of
the current node is equal to the head.)

� Doubly linked lists

◦ Each node points to not only successor but the
predecessor

◦ There are two NULL: at the first and last nodes in
the list

◦ Advantage: given a node, it is easy to visit its
predecessor. Convenient to traverse lists
backwards

Head

C B A 

to reset some pointers.

� Linked lists are more complex to code and
manage than arrays, but they have some distinct
advantages.

◦ Dynamic: a linked list can easily grow and shrink in size.
🞄 We don’t need to know how many nodes will be in the list.

They are created in memory as needed.

🞄 In contrast, the size of a C++ array is fixed at compilation
time.

◦ Easy and fast insertions and deletions

🞄 To insert or delete an element in an array, we need to copy
to temporary variables to make room for new elements or
close the gap caused by deleted elements.

🞄 With a linked list, no need to move other nodes. Only need

 head

� Follow the previous steps

 //

and we get

 Step 1

Step 2

 Step 3

 head  93

 48  17  142

� Insertion at the top of the list

� Insertion at the end of the list

� Insertion in the middle of the list

Steps:

� Create a Node

� Set the node data Values

� Connect the pointers

 head

� Follow the previous steps

 //

and we get

 Step 1

Step 2

 Step 3

 48  17  142

� Insertion at the top of the list

� Insertion at the end of the list

� Insertion in the middle of the list

Steps:

� Create a Node

� Set the node data Values

� Break pointer connection

� Re-connect the pointers

 Step 1

Step 2

 Step 3

 Step 4

� Introduction

� Insertion Description

� Deletion Description

� Basic Node Implementation

� Conclusion

� Deleting from the top of the list

� Deleting from the end of the list

� Deleting from the middle of the list

� Deleting from the top of the list

� Deleting from the end of the list

� Deleting from the middle of the list

Steps

� Break the pointer connection

� Re-connect the nodes

� Delete the node

 head

 head

 42  17 4

4 6

6 4  17  42

 17  42

 head

� Deleting from the top of the list

� Deleting from the end of the list

� Deleting from the middle of the list

Steps

� Break the pointer connection

� Set previous node pointer to NULL

� Delete the node

6 4  17

 head

 head

 head

 17 4 6

 17  42

 42

4 6

� Deleting from the top of the list

� Deleting from the end of the list

� Deleting from the middle of the list

Steps

� Set previous Node pointer to next node

� Break Node pointer connection

� Delete the node

 42 4

4  17  42

 head

 head

 head

4  17  42

The following code is written in C++:

Struct Node

{

int data; //any type of data could be another

struct

Node *next; //this is an important piece of code

“pointer”

};

1

� In a linked representation of a binary tree,
the number of null links (null pointers) are
actually more than non-null pointers.

� Consider the following binary tree:

� In above binary tree, there are 7 null pointers
& actual 5 pointers.

� In all there are 12 pointers.

� We can generalize it that for any binary tree
with n nodes there will be (n+1) null pointers
and 2n total pointers.

� The objective here to make effective use of
these null pointers.

� A. J. perils & C. Thornton jointly proposed idea
to make effective use of these null pointers.

� According to this idea we are going to replace
all the null pointers by the appropriate pointer
values called threads.

� And binary tree with such pointers are called
threaded tree.

� In the memory representation of a threaded
binary tree, it is necessary to distinguish
between a normal pointer and a thread.

 Therefore we have an alternate node
representation for a threaded binary tree
which contains five fields as show bellow:

� Also one may choose a one-way threading or a
two-way threading.

� Here, our threading will correspond to the in
order traversal of T.

� Accordingly, in the one way threading of T, a
thread will appear in the right field of a node
and will point to the next node in the in-order
traversal of T.

� See the bellow example of one-way in-order
threading.

Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

� In the two-way threading of T.

� A thread will also appear in the left field of a
node and will point to the preceding node in
the in-order traversal of tree T.

� Furthermore, the left pointer of the first node
and the right pointer of the last node (in the
in-order traversal of T) will contain the null
value when T does not have a header node.

� Bellow figure show two-way in-order
threading.

� Here, right pointer=next node of in-order
traversal and left pointer=previous node of
in-order traversal

� Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

� Again two-way threading has left pointer of
the first node and right pointer of the last
node (in the inorder traversal of T) will
contain the null value when T will point to
the header nodes is called two-way threading
with header node threaded binary tree.

node.

� Bellow figure to explain two-way threading with
header

� Bellow example of link representation of
threading binary tree.

� In-order traversal of bellow tree:
G,F,B,A,D,C,E

� Advantages of threaded binary tree:

� Threaded binary trees have numerous
advantages over non-threaded binary trees
listed as below:

◦ The traversal operation is more faster than that of its
unthreaded version, because with threaded binary tree
non-recursive implementation is possible which can
run faster and does not require the botheration of
stack management.

� Advantages of threaded binary tree:

◦ The second advantage is more understated with a
threaded binary tree, we can efficiently determine the
predecessor and successor nodes starting from any
node. In case of unthreaded binary tree, however,
this task is more time consuming and difficult. For
this case a stack is required to provide upward
pointing information in the tree whereas in a
threaded binary tree, without having to include the
overhead of using a stack mechanism the same can
be carried out with the threads.

� Advantages of threaded binary tree:

◦ Any node can be accessible from any other node.
Threads are usually more to upward whereas links
are downward. Thus in a threaded tree, one can move
in their direction and nodes are in fact circularly
linked. This is not possible in unthreaded counter
part because there we can move only in downward
direction starting from root.

◦ Insertion into and deletions from a threaded tree are
although time consuming operations but these are
very easy to implement.

� Disadvantages of threaded binary tree:

◦ Insertion and deletion from a threaded tree are very
time consuming operation compare to non-threaded
binary tree.

◦ This tree require additional bit to identify the

threaded link.

� Property1: each node can have up to two
successor nodes (children)

◦ The predecessor node of a node is called its parent
◦ The "beginning" node is called the root (no parent)

◦ A node without children is called a leaf

 20

 21

 22

 23

23

A Tree Has a Root Node

ROOT NODE Owner

Jake

Manager

Brad

Carol

Chef

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

24

Owner

Jake

Manager

Brad

Chef

Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

Leaf nodes have no children

LEAF NODES

� Property2: a unique path exists from the
root to every other node

� Ancestor of a node: any node on the path from

the root to that node

� Descendant of a node: any node on a path from
the node to the last node in the path

� Level (depth) of a node: number of edges in the
path from the root to that node

� Height of a tree: number of levels (warning:
some books define it as #levels - 1)

27

A Tree Has Levels

LEVEL 0 Owner

Jake

Manager

Brad

Carol

Chef

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

28

Level One

LEVEL 1

Owner

Jake

Manager

Brad

Chef

Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

29

Level Two

Owner

Jake

Manager

Brad

Carol

Chef

LEVEL 2
Waitress Waiter Cook Helper

Joyce Chris Max Len

30

Owner

Jake

Manager

Brad

Chef

Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

A Subtree

LEFT SUBTREE OF ROOT NODE

31

Owner

Jake

Manager

Brad

Chef

Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

Another Subtree

RIGHT SUBTREE

OF ROOT NODE

l 2l

N  20  21  ...  2h1  2h 1
l=0 l=1 l=h-1

using the geometric series:

x 0 x  ...  x 1 n1 
i0

n1

x i x n

x1
1

max height of a tree with N nodes
e as a linked list)

2
h
 1 

 2
h
 

N

N  1
� The
(sam h  log(N  1)  O(log N)

is N

� The min height of a tree with N nodes is

log(N+1)



(1) Start at the root

(2) Search the tree level by level, until you
find the element you are searching for

(O(N) time in worst case)

Is this better than searching a linked list?

No ---> O(N)

� Binary Search Tree Property: The value stored
at a node is greater than the value stored at
its left child and less than the value stored at
its right child

� Thus, the value stored at the root of a subtree
is greater than any value in its left subtree
and less than any value in its right subtree!!

(1) Start at the root

(2) Compare the value of the item you are
searching for with the value stored at the
root

(3) If the values are equal, then item found;
otherwise, if it is a leaf node, then not found

(4) If it is less than the value stored at the
root, then search the left subtree
(5) If it is greater than the value stored at
the root, then search the right subtree

(6) Repeat steps 2-6 for the root of the
subtree chosen in the previous step 4 or 5

Is this better than searching a linked list?

Yes !! ---> O(logN)

template<class ItemType>
struct TreeNode {

ItemType info;
TreeNode* left;
TreeNode* right; };

#include <fstream.h>

template<class ItemType>
struct TreeNode;

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER};

template<class ItemType>
class TreeType {
public:
TreeType();
~TreeType();
TreeType(const TreeType<ItemType>&);
void operator=(const TreeType<ItemType>&);
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
int NumberOfNodes() const; (continues)

(cont.)
void RetrieveItem(ItemType&, bool& found);
void InsertItem(ItemType);
void DeleteItem(ItemType);
void ResetTree(OrderType);
void GetNextItem(ItemType&, OrderType, bool&);
void PrintTree(ofstream&) const;

private:
TreeNode<ItemType>* root;

};

};

� Recursive implementation

#nodes in a tree =
#nodes in left subtree + #nodes in right

subtree + 1

� What is the size factor?

Number of nodes in the tree we are examining

� What is the base case?

The tree is empty

� What is the general case?

CountNodes(Left(tree)) + CountNodes(Right(tree))

+ 1

}

template<class ItemType>
int TreeType<ItemType>::NumberOfNodes() const
{
return CountNodes(root);

}

template<class ItemType>
int CountNodes(TreeNode<ItemType>* tree)
{
if (tree == NULL)
return 0;

else
return CountNodes(tree->left) + CountNodes(tree->right) + 1;

Let’s consider the first few steps:

� What is the size of the problem?
Number of nodes in the tree we are examining

� What is the base case(s)?

1) When the key is found

2) The tree is empty (key was not found)

� What is the general case?

Search in the left or right subtrees

template <class ItemType>
void TreeType<ItemType>:: RetrieveItem(ItemType& item,bool& found)
{

Retrieve(root, item, found);
}

template<class ItemType>
void Retrieve(TreeNode<ItemType>* tree,ItemType& item,bool& found)
{

if (tree == NULL) // base case 2
found = false;

else if(item < tree->info)
Retrieve(tree->left, item, found);
else if(item > tree->info)
Retrieve(tree->right, item, found);
else { // base case 1
item = tree->info;
found = true;

}

}

� Use the
binary
search tree
property to
insert the
new item at
the correct
place

Function

InsertItem

(cont.)

•

Insert 11

� What is the size of the problem?
Number of nodes in the tree we are examining

� What is the base case(s)?
The tree is empty

� What is the general case?

Choose the left or right subtree

template<class ItemType>
void TreeType<ItemType>::InsertItem(ItemType item)
{
Insert(root, item);

}

template<class ItemType>
void Insert(TreeNode<ItemType>*& tree, ItemType item)
{
if(tree == NULL) { // base case
tree = new TreeNode<ItemType>;
tree->right = NULL;
tree->left = NULL;
tree->info = item;

}
else if(item < tree->info)
Insert(tree->left, item);
else
Insert(tree->right, item);

}

Insert 11

� Yes, certain orders produce very unbalanced
trees!!

� Unbalanced trees are not desirable because
search time increases!!

� There are advanced tree structures (e.g.,"red-
black trees") which guarantee balanced trees

Does the

order of

inserting

elements

into a tree

matter?

(cont.)

� First, find the item; then, delete it

� Important: binary search tree property
must be preserved!!

� We need to consider three different cases:

(1) Deleting a leaf

(2) Deleting a node with only one child

(3) Deleting a node with two children

� Find predecessor (it is the rightmost node
in the left subtree)

� Replace the data of the node to be deleted
with predecessor's data

� Delete predecessor node

� What is the size of the problem?
Number of nodes in the tree we are examining

� What is the base case(s)?
Key to be deleted was found

� What is the general case?

Choose the left or right subtree

template<class ItemType>
void TreeType<ItmeType>::DeleteItem(ItemType item)
{
Delete(root, item);

}

template<class ItemType>
void Delete(TreeNode<ItemType>*& tree, ItemType item)
{
if(item < tree->info)
Delete(tree->left, item);
else if(item > tree->info)
Delete(tree->right, item);
else
DeleteNode(tree);

}

template <class ItemType>
void DeleteNode(TreeNode<ItemType>*& tree)
{

ItemType data;
TreeNode<ItemType>* tempPtr;

tempPtr = tree;
if(tree->left == NULL) { //right child
tree = tree->right;
delete tempPtr;

}

0 or 1 child

else if(tree->right == NULL) { // left child
tree = tree->left;
delete tempPtr;

}
0 or 1 child

else {
GetPredecessor(tree->left, data);
tree->info = data;
Delete(tree->left, data);

}
}

2 children

template<class ItemType>

void GetPredecessor(TreeNode<ItemType>* tree, ItemType& data)

{

while(tree->right != NULL)

tree = tree->right;

data = tree->info;

}

There are mainly three ways to traverse a
tree:

Inorder Traversal

Postorder Traversal

Preorder Traversal

tree

‘J’

‘E’ ‘T’

Visit left subtree first Visit right subtree last

66

‘Y’ ‘M’ ‘H’ ‘A’

� Visit the nodes in the left subtree, then
visit the root of the tree, then visit the
nodes in the right subtree

Inorder(tree)

If tree is not NULL
Inorder(Left(tree))
Visit Info(tree)
Inorder(Right(tree))

(Warning: "visit" means that the algorithm
does something with the values in the
node, e.g., print the value)

68

Postorder

tree

‘J’

‘E’ ‘T’

Visit left subtree first Visit right subtree second

‘Y’ ‘M’ ‘H’ ‘A’

� Visit the nodes in the left subtree first,
then visit the nodes in the right subtree,
then visit the root of the tree

Postorder(tree)

If tree is not NULL

Postorder(Left(tree))

Postorder(Right(tree))

Visit Info(tree)

70

tree

‘J’

‘E’ ‘T’

Visit left subtree second Visit right subtree last

‘Y’ ‘M’ ‘H’ ‘A’

� Visit the root of the tree first, then visit the
nodes in the left subtree, then visit the
nodes in the right subtree

Preorder(tree)

If tree is not NULL

Visit Info(tree)

Preorder(Left(tree))

Preorder(Right(tree))

� We use "inorder" to print out the node values

� Why?? (keys are printed out in ascending
order!!)

� Hint: use binary search trees for sorting !!

and >>)

void TreeType::PrintTree(ofstream& outFile)
{
Print(root, outFile);

}

template<class ItemType>
void Print(TreeNode<ItemType>* tree, ofstream& outFile)
{
if(tree != NULL) {
Print(tree->left, outFile);
outFile << tree->info;
Print(tree->right, outFile);

}
}

(see textbook for overloading <<

template<class ItemType>

TreeType<ItemType>::TreeType()

{

root = NULL;

}

}
}

� Delete the tree in a "bottom-up" fashion

� Postorder traversal is appropriate for this

!!
TreeType::~TreeType()
{

Destroy(root);
}

void Destroy(TreeNode<ItemType>*& tree)
{

if(tree != NULL) {
Destroy(tree->left);
Destroy(tree->right);
delete tree;

}
}

template<class ItemType>
TreeType<ItemType>::TreeType(const TreeType<ItemType>&

originalTree)
{
CopyTree(root, originalTree.root);

}

 template<class ItemType)
void CopyTree(TreeNode<ItemType>*& copy,

TreeNode<ItemType>* originalTree)
{
if(originalTree == NULL)
copy = NULL;

else {
copy = new TreeNode<ItemType>;
copy->info = originalTree->info;
CopyTree(copy->left, originalTree->left);
CopyTree(copy->right, originalTree->right);

preorder

� The user is allowed to specify the tree
traversal order

� For efficiency, ResetTree stores in a queue
the results of the specified tree traversal

� Then, GetNextItem, dequeues the node
values from the queue

enum OrderType {PRE_ORDER, IN_ORDER,
POST_ORDER};

template<class ItemType>
class TreeType {
public:
// same as before

private:
TreeNode<ItemType>* root;
QueType<ItemType> preQue;
QueType<ItemType> inQue;
QueType<ItemType> postQue;

};

new private data

template<class ItemType>
void PreOrder(TreeNode<ItemType>*,

QueType<ItemType>&);

template<class ItemType>
void InOrder(TreeNode<ItemType>*,

QueType<ItemType>&);

template<class ItemType>
void PostOrder(TreeNode<ItemType>*,

QueType<ItemType>&);

template<class ItemType>
void PreOrder(TreeNode<ItemType>tree,

QueType<ItemType>& preQue)
{
if(tree != NULL) {
preQue.Enqueue(tree->info);
PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);

}
}

template<class ItemType>
void InOrder(TreeNode<ItemType>tree,

QueType<ItemType>& inQue)
{
if(tree != NULL) {
InOrder(tree->left, inQue);
inQue.Enqueue(tree->info);
InOrder(tree->right, inQue);

}
}

template<class ItemType>

void PostOrder(TreeNode<ItemType>tree,

QueType<ItemType>& postQue)

{

if(tree != NULL) {

PostOrder(tree->left, postQue);

PostOrder(tree->right, postQue);

postQue.Enqueue(tree->info);

}

}

template<class ItemType>
void TreeType<ItemType>::ResetTree(OrderType order)
{
switch(order) {
case PRE_ORDER: PreOrder(root, preQue);

break;
case IN_ORDER: InOrder(root, inQue);

break;
case POST_ORDER: PostOrder(root, postQue);

break;
}

}

template<class ItemType>
void TreeType<ItemType>::GetNextItem(ItemType& item,

OrderType order, bool& finished)
{

finished = false;
switch(order) {
case PRE_ORDER: preQue.Dequeue(item);

if(preQue.IsEmpty())
finished = true;
break;

case IN_ORDER: inQue.Dequeue(item);
if(inQue.IsEmpty())
finished = true;

break;

case POST_ORDER: postQue.Dequeue(item);
if(postQue.IsEmpty())
finished = true;
break;

}
}

� See textbook

Big-O Comparison

Operation
Binary

Search Tree

Array-
based List

Linked

List

Constructor O(1) O(1) O(1)

Destructor O(N) O(1) O(N)

IsFull O(1) O(1) O(1)

IsEmpty O(1) O(1) O(1)

RetrieveItem O(logN) O(logN) O(N)

InsertItem O(logN) O(N) O(N)

DeleteItem O(logN) O(N) O(N)

� 1-3, 8-18, 21, 22, 29-32

1

Definition

 A graph G consists of two sets

– a finite, nonempty set of vertices V(G)

– a finite, possible empty set of edges E(G)

– G(V,E) represents a graph

 An undirected graph is one in which the pair of

vertices in a edge is unordered, (v0, v1) = (v1,v0)

 A directed graph is one in which each edge is a

directed pair of vertices, <v0, v1> != <v1,v0>

tail head

2

Examples for Graph
0 0 0

1 2 1 2
1

3
3 4 5 6

G1
G

2

complete graph
2

incomplete graph G3

V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}

V(G2)={0,1,2,3,4,5,6} E(G2)={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}

V(G3)={0,1,2} E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges

complete directed graph: n(n-1) edges

3

Complete Graph

 A complete graph is a graph that has the

maximum number of edges

– for undirected graph with n vertices, the maximum

number of edges is n(n-1)/2

– for directed graph with n vertices, the maximum

number of edges is n(n-1)

– example: G1 is a complete graph

4

Adjacent and Incident

 If (v0, v1) is an edge in an undirected graph,

– v0 and v1 are adjacent

– The edge (v0, v1) is incident on vertices v0 and v1

 If <v0, v1> is an edge in a directed graph

– v0 is adjacent to v1, and v1 is adjacent from v0

– The edge <v0, v1> is incident on v0 and v1

5

6

0 2

1

self

*Figure 6.3:Example of a graph with feedback loops and a

 multigraph (p.260)

0

1 3

2

edge multigraph:

(a) (b) multiple occurrences

of the same edge

7

 A subgraph of G is a graph G’ such that V(G’)

is a subset of V(G) and E(G’) is a subset of E(G)

 A path from vertex vp to vertex vq in a graph G,

is a sequence of vertices, vp, vi1, vi2, ..., vin, vq,

such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges

in an undirected graph

 The length of a path is the number of edges on

it

0

1

0

1

2 2

0

1 2

3

0 0

1 2

1 2

3

0

1 2

3

G1 (i) (ii) (iii) (iv)
(a) Some of the subgraph of G1

0

單一

1 分開

(i) (ii) (iii) (iv)

(b) Some of the subgraph of G3

G3 8

0 0

1

2

9

 A simple path is a path in which all vertices,

except possibly the first and the last, are distinct

 A cycle is a simple path in which the first and

the last vertices are the same

 In an undirected graph G, two vertices, v0 and v1

are connected if there is a path in G from v0 to v1

 An undirected graph is connected if, for every

pair of distinct vertices vi, vj, there is a path

from vi to vj

10

0

1 2

3

connected

G1

2

tree (acyclic graph)

0

1 2

3 4 5 6

G

11

 A connected component of an undirected graph

is a maximal connected subgraph.

 A tree is a graph that is connected and acyclic.

 A directed graph is strongly connected if there

is a directed path from vi to vj and also

from vj to vi.

 A strongly connected component is a maximal

subgraph that is strongly connected.

12

0

2 1

3

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

H1 H2 4

5

6

7

G4 (not connected)

13

*Figure 6.6: Strongly connected components of G3 (p.262)

strongly connected component

not strongly connected (maximal strongly connected subgraph)

G3

0

1

2

0

1

2

14

Degree

 The degree of a vertex is the number of edges
incident to that vertex

 For directed graph,
– the in-degree of a vertex v is the number of edges

that have v as the head

– the out-degree of a vertex v is the number of edges
that have v as the tail

– if di is the degree of a vertex i in a graph G with n
vertices and e edges, the number of edges is

n1

e  (d
i
) / 2

0

15

0

1 2

G 3
3

1

undirected graph

degree
3

3 3

0

directed graph

in-degree

out-degree 1

2

G3

1 1 G2 1 1

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

0

1

3

2
2

3

3 4 5 6

16

structure Graph is

ADT for Graph

objects: a nonempty set of vertices and a set of undirected edges, where each
edge is a pair of vertices

functions: for all graph  Graph, v, v1 and v2  Vertices

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no
incident edge.

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge
between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2)
is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE

else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

17

Graph Representations

 Adjacency Matrix

 Adjacency Lists

18

Adjacency Matrix

 Let G=(V,E) be a graph with n vertices.

 The adjacency matrix of G is a two-dimensional

n by n array, say adj_mat

 If the edge (vi, vj) is in E(G), adj_mat[i][j]=1

 If there is no such edge in E(G), adj_mat[i][j]=0

 The adjacency matrix for an undirected graph is

symmetric; the adjacency matrix for a digraph

need not be symmetric

G4 19

0

2 1

3

4

5

6

7
1 1

0

1

1 0

0

0

0

1

0

1




Examples for Adjacency Matrix
0

1 2

3
0 1 1 1 


1 

1 1 0 1 
 
1 1 





0


0

1 0


0  0 0
0 0  

 
G 1 0

G1
2

 
 
0 0
 

0 0
symmetric  

 

undirected: n2/2

directed: n2

0 0

0

1

2
1

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

20



Merits of Adjacency Matrix

 From the adjacency matrix, to determine the

connection of vertices is easy
n1

 The degree of a vertex is adj_ mat[i][j]
j 0

 For a digraph, the row sum is the out_degree,

while the column sum is the in_degree

ind (vi) 
n1


j0

A[j,i] outd (vi) 
n1


j0

A[i, j]

21

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {

int vertex;

struct node *link;

};

node_pointer graph[MAX_VERTICES];

int n=0; /* vertices currently in use *

1 2 3

0 2 3

0 1 3

0 1 2

1

0 2

0

1 2

3

0 0

1 1

2 2

3 3

G1 0 4
5

0 6

1 1
7

2

G3
2

G4

An undirected graph with n vertices and e edges ==> nCHAhPeTEaRd6 nodes and 2e list nod2e2 s

1 2

0 3

0 3

1 2

5

4 6

5 7

6

0

2 1

3

4

5

6

7

23

 degree of a vertex in an undirected graph

–# of nodes in adjacency list

 # of edges in a graph

–determined in O(n+e)

 out-degree of a vertex in a directed graph

–# of nodes in its adjacency list

 in-degree of a vertex in a directed graph

–traverse the whole data structure

24

node[n]: n+2e+1

node[0] … node[n-1]: starting point for vertices

node[n+1] … node[n+2e]: head node of edge

[0] 9 [8] 23 [16] 2

[1] 11 0 [9] 1 4 [17] 5

[2] 13 [10] 2 5 [18] 4

[3] 15 1 [11] 0 [19] 6

[4] 17 [12] 3 6 [20] 5

[5] 18 2 [13] 0 [21] 7

[6] 20 [14] 3 7 [22] 6

[7] 22 3 [15] 1

0

2 1

3

4

5

6

7

25

0

1

2

Determine in-degree of a vertex in a fast way.







0

1

2

NULL 1

NULL 0

NULL 1

CHAPTER 6 26

tail head column link for head row link for tail

27

1

0 1


 0

0 0

0



0

0

0 1 2

1

0

1

2

1

0 1 NULL NULL

1 0 NULL

1 2 NULL NULL

2
NULL

28




Order is of no significance.

headnodes vertax link

0

1

2

3

0

1 2

3







 NULL 0 1 2

NULL 1 0 3

NULL 3 0 2

NULL 2 1 3

29

Some Graph Operations

 Traversal

Given G=(V,E) and vertex v, find all wV,

such that w connects v.

– Depth First Search (DFS)

preorder tree traversal

– Breadth First Search (BFS)

level order tree traversal

 Connected Components

 Spanning Trees

30

*Figure 6.19:Graph G and its adjacency lists (p.274)

depth first search: v0, v1, v3, v7, v4, v5, v2, v6

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

31

Data structure

adjacency list: O(e)

adjacency matrix: O(n2)

#define FALSE 0
#define TRUE 1
short int visited[MAX_VERTICES];

Depth First Search

void dfs(int v)

{

node_pointer w;

visited[v]= TRUE;

printf(“%5d”, v);

for (w=graph[v]; w; w=w->link)

if (!visited[w->vertex])

dfs(w->vertex);

}

32

Breadth First Search

typedef struct queue *queue_pointer;

typedef struct queue {

int vertex;

queue_pointer link;

};

void addq(queue_pointer *,

queue_pointer *, int);

int deleteq(queue_pointer *);

33

adjacency list: O(e)

adjacency matrix: O(n2)

Breadth First Search (Continued)

void bfs(int v)

{

node_pointer w;

queue_pointer front, rear;

front = rear = NULL;

printf(“%5d”, v);

visited[v] = TRUE;

addq(&front, &rear, v);

34

while (front) {

v= deleteq(&front);

for (w=graph[v]; w; w=w->link)

if (!visited[w->vertex]) {

printf(“%5d”, w->vertex);

addq(&front, &rear, w->vertex);

visited[w->vertex] = TRUE;

}

}

}

35

}

adjacency list: O(n+e)

adjacency matrix: O(n2)

Connected Components

void connected(void)

{

for (i=0; i<n; i++) {

if (!visited[i]) {

dfs(i);

printf(“\n”);

}

}

Topics

� Sequential Search on an Unordered File

� Sequential Search on an Ordered File

� Binary Search

� Bubble Sort

� Insertion Sort

� There are some very common problems that
we use computers to solve:
◦ Searching through a lot of records for a specific

record or set of records

◦ Placing records in order, which we call sorting

� There are numerous algorithms to perform
searches and sorts. We will briefly explore
a few common ones.

◦ Sequential (linear) search

◦ Binary search

� A question you should always ask when
selecting a search algorithm is “How fast does
the search have to be?” The reason is that, in
general, the faster the algorithm is, the more
complex it is.

� Bottom line: you don’t always need to use or
should use the fastest algorithm.

� Let’s explore the following search algorithms,
keeping speed in mind.

� Basic algorithm:

Get the search criterion (key)

Get the first record from the file
While ((record != key) and (still more records))

Get the next record

End_while

� When do we know that there wasn’t a record in
the file that matched the key?

in the file that matched the

� Basic algorithm:

Get the search criterion (key)

Get the first record from the file
While ((record < key) and (still more records))

Get the next record

End_while

If (record = key)

Then success

Else there is no match in the file

End_else

� When do we know that there wasn’t a record

key?

� Let’s do a comparison.

� If the order was ascending alphabetical on
customer’s last names, how would the search
for John Adams on the ordered list compare
with the search on the unordered list?

◦ Unordered list

🞄 if John Adams was in the list?

🞄 if John Adams was not in the list?

◦ Ordered list

🞄 if John Adams was in the list?

🞄 if John Adams was not in the list?

� How about George Washington?
◦ Unordered

🞄 if George Washington was in the list?

🞄 If George Washington was not in the list?

◦ Ordered

🞄 if George Washington was in the list?

🞄 If George Washington was not in the list?

� How about James Madison?

� Observation: the search is faster on an ordered
list only when the item being searched for is not
in the list.

� Also, keep in mind that the list has to first be
placed in order for the ordered search.

� Conclusion: the efficiency of these algorithms

is roughly the same.

� So, if we need a faster search, we need a
completely different algorithm.

� How else could we search an ordered file?

� If we have an ordered list and we know how
many things are in the list (i.e., number of
records in a file), we can use a different
strategy.

� The binary search gets its name because the

algorithm continually divides the list into two
parts.

Always look at the center
value. Each time you get
to discard half of the
remaining list.

Is this fast ?

� Worst case: 11 items in the list took 4 tries

� How about the worst case for a list with 32
items ?
◦ 1st try - list has 16 items

◦ 2nd try - list has 8 items

◦ 3rd try - list has 4 items

◦ 4th try - list has 2 items

◦ 5th try - list has 1 item

List has 250 items

1st try - 125
items

2nd try - 63 items

3rd try - 32 items

4th try - 16 items

5th try - 8 items

6th try - 4 items

7th try - 2 items

8th try - 1 item

List has 512 items

1st try - 256
items

2nd try - 128
items

3rd try - 64 items

4th try - 32 items

5th try - 16 items

6th try - 8 items

7th try - 4 items

8th try - 2 items
9th try - 1 item

� List of 11 took 4 tries

� List of 32 took 5 tries

� List of 250 took 8 tries

� List of 512 took 9 tries

� 32 = 25 and 512 = 29

� 8 < 11 < 16 23 < 11 < 24

� 128 < 250 < 256 27 < 250 < 28

� How long (worst case) will it take to find an
item in a list 30,000 items long?

210 = 1024 213 = 8192

211 = 2048 214 = 16384

212 = 4096 215 = 32768

� So, it will take only 15 tries!

� We say that the binary search algorithm runs in
log2 n time. (Also written as lg n)

� Lg n means the log to the base 2 of some value
of n.

� 8 = 23 lg 8 = 3 16 = 24 lg 16 = 4

� There are no algorithms that run faster than lg
n time.

� So, the binary search is a very fast search
algorithm.

� But, the list has to be sorted before we can
search it with binary search.

� To be really efficient, we also need a fast sort
algorithm.

Bubble Sort Heap Sort

Selection Sort Merge Sort

Insertion Sort Quick Sort

� There are many known sorting algorithms.
Bubble sort is the slowest, running in n2 time.
Quick sort is the fastest, running in n lg n

time.

� As with searching, the faster the sorting
algorithm, the more complex it tends to be.

� We will examine two sorting algorithms:

◦ Bubble sort

◦ Insertion sort

void bubbleSort (int a[] , int size)

{

int i, j, temp;

for (i = 0; i < size; i++) /* controls passes through the list */

{

for (j = 0; j < size - 1; j++) /* performs adjacent comparisons

*/

{

if (a[j] > a[j+1]) /* determines if a swap should

occur */

{

}

}

temp = a[j]; /* swap is performed */

a[j] = a[j + 1];

a[j+1] = temp;

}

}

� Insertion sort is slower than quick sort, but
not as slow as bubble sort, and it is easy to
understand.

� Insertion sort works the same way as
arranging your hand when playing cards.
◦ Out of the pile of unsorted cards that were dealt to

you, you pick up a card and place it in your hand in
the correct position relative to the cards you’re
already holding.

7 5

7

5 7

5 6 7

5 6 7 K

K 8 7 6 5

K

Unsorted - shaded

Look at 2nd item - 5.

Compare 5 to 7.

5 is smaller, so move 5

to temp, leaving

an empty slot in

position 2.

Move 7 into the empty

slot, leaving position 1

open.

Move 5 into the open

position.

7

7

2
>

<
3 7 5

5
1

v

5

7

7

K

Look at next item - 6.

Compare to 1st - 5.

6 is larger, so leave 5.
Compare to next - 7.
6 is smaller, so move
6 to temp, leaving an
empty slot.

Move 7 into the

slot, leaving position

open.

Move 6 to the open

2nd position.

7

emp

22 >
7

<
3 7 6 5

5

5

v

6
ty

1
7 5

6 7 5

7 6

King.
5

it is.

Look at next item -

Compare to 1st - 5.

King is larger, so

leave 5 where

Compare to next -

6. King is larger, so
leave 6

where it is.

Compare to next - 7.

King is larger, so

leave 7 where it is.

K

5 6 7 K 8

K 7 6 5

K

2
>

<
3

K

K 8 7 6 5

7 6 5

7 6 5

v

8

8
1

� In CS, a hash table, or a hash map, is a data

structure that associates keys (names) with
values (attributes).

◦ Look-Up Table

◦ Dictionary

◦ Cache

◦ Extended Array

A small phone book as a hash table.
(Figure is from Wikipedia)

� Collection of pairs.
◦ (key, value)

◦ Each pair has a unique key.

� Operations.
◦ Get(theKey)

◦ Delete(theKey)

◦ Insert(theKey, theValue)

� Hash table :
◦ Collection of pairs,

◦ Lookup function (Hash function)

� Hash tables are often used to implement
associative arrays,
◦ Worst-case time for Get, Insert, and Delete is

O(size).

◦ Expected time is O(1).

� Search tree methods: key comparisons

◦ Time complexity: O(size) or O(log n)

� Hashing methods: hash functions

◦ Expected time: O(1)

� Types

◦ Static hashing (section 8.2)

◦ Dynamic hashing (section 8.3)

� Key-value pairs are stored in a fixed size
table called a hash table.

◦ A hash table is partitioned into many buckets.

◦ Each bucket has many slots.

◦ Each slot holds one record.

◦ A hash function f(x) transforms the identifier (key)

into an address in the hash table

s slots

0 1 s-1

0

1

b-1

b
 b

u
ck

ets

 . . .

.

.

.

.

.

.

 .

.

.

 . . .

#define MAX_CHAR 10

#define TABLE_SIZE 13

typedef struct {
char key[MAX_CHAR];

/* other fields */

} element;

element hash_table[TABLE_SIZE];

� Open addressing ensures that all elements

are stored directly into the hash table, thus
it attempts to resolve collisions using
various methods.

� Linear Probing resolves collisions by placing

the data into the next open slot in the table.

� divisor = b (number of buckets) = 17.

� Home bucket = key % 17.

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

• Insert pairs whose keys are 6, 12, 34, 29, 28, 11,
23, 7, 0, 33, 30, 45

0 4 8

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

� Delete(0)

0 4 8 12 16

34 45 6 23 7 28 12 29 11 30 33

• Search cluster for pair (if any) to fill vacated bucket.

12 16

34 45 6 23 7 28 12 29 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

0

4

8

12

16

 0 45 6 23 7 28 12 29 11 30 33

� Search cluster for pair (if any) to fill vacated
bucket.

0 4 8 12 16

0 45 6 23 7 28 12 29 11 30 33

0

4

8

12

16

0 45 6 23 7 28 12 29 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

0

4

8

12

16

34 0 45 6 23 7 28 12 11 30 33

� Search cluster for pair (if any) to fill vacated
bucket.

0 4 8 12 16

34 0 45 6 23 7 28 12 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 11 30 33

0 4 8 12 16

34 0 6 23 7 28 12 11 30 45 33

void linear_insert(element item, element ht[]){

int i, hash_value;
i = hash_value = hash(item.key);

while(strlen(ht[i].key)) {
if (!strcmp(ht[i].key, item.key)) {

fprintf(stderr, “Duplicate entry\n”); exit(1);

}

i = (i+1)%TABLE_SIZE;

if (i == hash_value) {
fprintf(stderr, “The table is full\n”); exit(1);

} }

ht[i] = item;

}

� Identifiers tend to cluster together

� Adjacent cluster tend to coalesce

� Increase the search time

Example:
M (# of pages)=4,

P (page capacity)=2

Allocation: lower order

two bits

Figure 8.8:Some identifiers requiring 3 bits per character(p.414)

Identifiers Binary representaiton

a0 100 000

a1 100 001

b0 101 000

b1 101 001

c0 110 000

c1 110 001

c2 110 010

c3 110 011

Figure 8.9: A trie to hole

identifiers (p.415)

Read it in reverse
order.

c5: 110 101

c1: 110 001

Files, ACM Transactions

4(3):315-344, 1979.

� We need to consider some issues!
◦ Skewed Tree,

◦ Access time increased.

� Fagin et. al. proposed extendible hashing to
solve above problems.
◦ Ronald Fagin, Jürg Nievergelt, Nicholas

Pippenger, and H. Raymond Strong, Extendible
Hashing - A Fast Access Method for Dynamic

on Database Systems,

� A directories is a table of pointer of pages.

� The directory has k bits to index 2^k entries.

� We could use a hash function to get the
address of entry of directory, and find the
page contents at the page.

The directory of
the three tries of

Figure 8.9

It is obvious that the directories will grow
very large if the hash function is clustering.

Therefore, we need to adopt the uniform
hash function to translate the bits

sequence of keys to the random bits
sequence.

Moreover, we need a family of uniform
hash functions, since the directory will

grow.

 https://nptel.ac.in/courses/106102064/
 https://www.javatpoint.com/data-structure-tutorial

 https://www.youtube.com/watch?v=Db9ZYbJONHc

 https://www.youtube.com/watch?v=DFpWCl_49i0

 https://www.youtube.com/watch?v=3hyxc4juJRg

 https://nptel.ac.in/courses/106/102/106102064/

https://nptel.ac.in/courses/106102064/
https://www.javatpoint.com/data-structure-tutorial
https://www.youtube.com/watch?v=Db9ZYbJONHc
https://www.youtube.com/watch?v=DFpWCl_49i0
https://www.youtube.com/watch?v=3hyxc4juJRg

