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�  Data structure is representation of the logical 

relationship existing between individual elements of 

data. 

�  In other words, a data structure is a way of organizing 

all data items that considers not only the elements 

stored but also their relationship to each other. 



 

 

 
 

 

 

 

 

 

�  Data structure affects the design of both structural & 

functional aspects of a program. 

Program=algorithm + Data Structure 

�  You know that a algorithm is a step by step procedure 

to solve a particular function. 



 

 

 
 

 

 

 

�  That means, algorithm is a set of instruction written 

to carry out certain tasks & the data structure is the 

way of organizing the data with their logical 

relationship retained. 

�  To develop a program of an algorithm, we should 

select an appropriate data structure for that algorithm. 

�  Therefore algorithm and its associated data structures 

from a program. 



 

 

 
 

 
 

�  Data structure are normally divided into two broad 

categories: 

◦ Primitive Data Structure 

◦ Non-Primitive Data Structure 
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�  There are basic structures and directly operated upon 
by the machine instructions. 

�  In general, there are different representation on 
different computers. 

�  Integer, Floating-point number, Character constants, 
string constants, pointers etc, fall in this category. 



 

 

 
 

 
 

�  There are more sophisticated data structures. 

�  These are derived from the primitive data structures. 

�  The non-primitive data structures emphasize on 

structuring of a group of homogeneous (same type) or 

heterogeneous (different type) data items. 



 

 

 
 

 
 

�  Lists, Stack, Queue, Tree, Graph are example of non- 

primitive data structures. 

�  The design of an efficient data structure must take 

operations to be performed on the data structure. 



 

 

 
 

 

 

 

 

 

�  The most commonly used operation on data 
structure are broadly categorized into following 
types: 
◦ Create 

◦ Selection 

◦ Updating 

◦ Searching 

◦ Sorting 

◦ Merging 

◦ Destroy or Delete 



 

 

 
 

 
 

�  A primitive data structure is generally a basic structure 

that is usually built into the language, such as an 

integer, a float. 

�  A non-primitive data structure is built out of primitive 

data structures linked together in meaningful ways, 

such as a or a linked-list, binary search tree, AVL Tree, 

graph etc. 



 

 
 

�  An array is defined as a set of finite number of 

homogeneous elements or same data items. 

�  It means an array can contain one type of data only, 

either all integer, all float-point number or all 

character. 



 

 

 
 

 

 

 

 

 

�  Simply, declaration of array is as follows: 

int arr[10] 

�  Where int specifies the data type or type of elements 

arrays stores. 

�  “arr” is the name of array & the number specified 

inside the square brackets is the number of elements 

an array can store, this is also called sized or length 

of array. 



 

 

 
 

�  Following are some of the concepts to be remembered 
about arrays: 

◦ The individual element of an array can be 
accessed by specifying name of the array, 
following by index or subscript inside square 
brackets. 
◦ The first element of the array has index 

zero[0]. It means the first element and last 
element will be specified as:arr[0] & arr[9] 
Respectively. 



 

 

 
 

 

 

 

 

◦ The elements of array will always be stored 
in the consecutive (continues) memory 
location. 

◦ The number of elements that can be stored 
in an array, that is the size of array or its 
length is given by the following equation: 

(Upperbound-lowerbound)+1 



 

 

 
 

◦ For the above array it would be 
(9-0)+1=10,where 0 is the lower bound of 

array and 9 is the upper bound of array. 

◦ Array can always be read or written through 
loop. If we read a one-dimensional array it 
require one loop for reading and other for 
writing the array. 



 

 

 
 
 

◦ For example: Reading an array 

For(i=0;i<=9;i++) 

scanf(“%d”,&arr[i]); 

◦ For example: Writing an array 

For(i=0;i<=9;i++) 

printf(“%d”,arr[i]); 



 

 

 
 
 

◦ If we are reading or writing two-dimensional 

array it would require two loops. And 

similarly the array of a N dimension would 

required N loops. 

◦ Some common operation performed on array 

are: 
🞄 Creation of an array 

🞄 Traversing an array 



 

 

 
 
 

◦ Insertion of new element 

◦ Deletion of required element 

◦ Modification of an element 

◦ Merging of arrays 



 

 

 
 

 

 

 

 
 

�  A lists (Linear linked list) can be defined as a 
collection of variable number of data items. 

�  Lists are the most commonly used non-primitive data 
structures. 

�  An element of list must contain at least two fields, one 
for storing data or information and other for storing 
address of next element. 

�  As you know for storing address we have a special data 
structure of list the address must be pointer type. 
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�  Technically each such element is referred to as a node, 

therefore a list can be defined as a collection of nodes 

as show bellow: 
 

 

 

 

 

[Linear Liked List] 
 

 

 

 

 

 

 

 

Information field Pointer field 

BBB AAA 

Head 



 

 

 
 

 

 

 

 
 

�  Types of linked lists: 
◦ Single linked list 
◦ Doubly linked list 
◦ Single circular linked list 

◦ Doubly circular linked list 



 

 

 
 

 
 

�  A stack is also an ordered collection of elements like 

arrays, but it has a special feature that deletion and 

insertion of elements can be done only from one end 

called the top of the stack (TOP) 

�  Due to this property it is also called as last in first out 

type of data structure (LIFO). 



 

 

 
 

 

 

 

 

 

�  It could be through of just like a stack of plates placed on 

table in a party, a guest always takes off a fresh plate 

from the top and the new plates are placed on to the stack 

at the top. 

�  It is a non-primitive data structure. 

�  When an element is inserted into a stack or removed 

from the stack, its base remains fixed where the top of 

stack changes. 



 

 

 
 

 
 

�  Insertion of element into stack is called PUSH and 

deletion of element from stack is called POP. 

�  The bellow show figure how the operations take place 

on a stack: 
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[STACK] 



 

 

 
 

 
 

�  The stack can be implemented into two ways: 

◦ Using arrays (Static implementation) 

◦ Using pointer (Dynamic implementation) 



 

 

 
 

 

 

 

 
 

�  Queue are first in first out type of data structure (i.e. 

FIFO) 

�  In a queue new elements are added to the queue from 

one end called REAR end and the element are always 

removed from other end called the FRONT end. 

�  The people standing in a railway reservation row are 

an example of queue. 
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�  Each new person comes and stands at the end of 

the row and person getting their reservation 

confirmed get out of the row from the front end. 

�  The bellow show figure how the operations take 

place on a stack: 
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�  The queue can be implemented into two ways: 

◦ Using arrays (Static implementation) 

◦ Using pointer (Dynamic implementation) 



 

 

 
 

 
 

�  A tree can be defined as finite set of data items (nodes). 

�  Tree is non-linear type of data structure in which data 

items are arranged or stored in a sorted sequence. 

�  Tree represent the hierarchical relationship between 

various elements. 



 

 

 
 

 

 

 

 

 

�  In trees: 

�  There is a special data item at the top of hierarchy 
called the Root of the tree. 

�  The remaining data items are partitioned into number 
of mutually exclusive subset, each of which is itself, 
a tree which is called the sub tree. 

�  The tree always grows in length towards bottom in 
data structures, unlike natural trees which grows 
upwards. 



 

 

 
 

 
 

�  The tree structure organizes the data into branches, 

which related the information. 

A root 

B C 

D E F G 



 

 

 
 

 

�  Graph is a mathematical non-linear data structure 

capable of representing many kind of physical 

structures. 

�  It has found application in Geography, Chemistry and 

Engineering sciences. 

�  Definition: A graph G(V,E) is a set of vertices V and a 

set of edges E. 



 

 

 
 

 

�  An edge connects a pair of vertices and many have 

weight such as length, cost and another measuring 

instrument for according the graph. 

�  Vertices on the graph are shown as point or circles and 

edges are drawn as arcs or line segment. 
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�  Example of graph: 
 

 

 

[a] Directed & 
Weighted Graph 

[b] Undirected Graph 



 

 

 
 

 

�  Types of Graphs: 

◦ Directed graph 

◦ Undirected graph 

◦ Simple graph 

◦ Weighted graph 

◦ Connected graph 

◦ Non-connected graph 



 

 
 
 

�  The array as an abstract data type 

�  Structures and Unions 

�  The polynomial Abstract Data Type 

�  The Sparse Matrix Abstract Data Type 

�  The Representation of Multidimensional 
Arrays 



 

 

 

 

 

�  Arrays 

◦ Array: a set of pairs, <index, value> 

◦ data structure 

🞄 For each index, there is a value associated with that 
index. 

◦ representation (possible) 

🞄 Implemented by using consecutive memory. 

🞄 In mathematical terms, we call this a correspondence 

or a mapping. 



 

 

 

 

 

 

 

�  When considering an ADT we are more 
concerned with the operations that can be 
performed on an array. 
◦ Aside from creating a new array, most languages 

provide only two standard operations for arrays, 
one that retrieves a value, and a second that 
stores a value. 

◦ Structure 2.1 shows a definition of the array ADT 

◦ The advantage of this ADT definition is that it 
clearly points out the fact that the array is a 
more general structure than “a consecutive set of 
memory locations.” 



 

 



 

 

 

�  Arrays in C 

◦ int list[5], *plist[5]; 

◦ list[5]: (five integers) list[0], list[1], list[2], list[3], 

list[4] 

◦ *plist[5]: (five pointers to integers) 
🞄 plist[0], plist[1], plist[2], plist[3], plist[4] 

◦ implementation of 1-D array 
list[0] base address =  
list[1]  + sizeof(int) 
list[2]  + 2*sizeof(int) 
list[3]  + 3*sizeof(int) 

list[4]  + 4*sizeof(int) 



 

 

 

 

�  Arrays in C (cont’d) 

◦ Compare int *list1 and int list2[5] in C. 
Same: list1 and list2 are pointers. 
Difference: list2 reserves five locations. 

◦ Notations: 
list2 － a pointer to list2[0] 
(list2 + i) － a pointer to list2[i] (&list2[i]) 

*(list2 + i) － list2[i] 



 

 

 

 

�  Example: 

1- dimension array addressing 
◦ int one[] = {0, 1, 2, 3, 4}; 

◦ Goal: print out address and value 
🞄 void print1(int *ptr, int rows){ 

/* print out a one-dimensional array using a pointer */ 
int i; 
printf(“Address Contents\n”); 
for (i=0; i < rows; i++) 

printf(“%8u%5d\n”, ptr+i, *(ptr+i)); 
printf(“\n”); 

} 



 

 

 

 
 

�  2.2.1 Structures (records) 

◦ Arrays are collections of data of the same type. In 
C there is an alternate way of grouping data that 
permit the data to vary in type. 
🞄 This mechanism is called the struct, short for structure. 

◦ A structure is a collection of data items, where 
each item is identified as to its type and name. 

 



 

 

 

 

�  Create structure data type 

◦ We can create our own structure data types by 
using the typedef statement as below: 

 

 
🞄 This says that human_being is the name of the type 

defined by the structure definition, and we may follow 
this definition with declarations of variables such as: 

human_being person1, person2; 



 

 
 

 

 

 

◦ We can also embed a structure within a structure. 

 

 

 

 
🞄 A person born on February 11, 1994, would have have 

values for the date struct set as 



 

 

 

 

 

 

◦ A union declaration is similar to a structure. 
◦ The fields of a union must share their memory space. 
◦ Only one field of the union is “active” at any given time 

🞄 Example: Add fields for male and female. 
 

 

 

 

 

 

person1.sex_info.sex = male; 
person1.sex_info.u.beard = FALSE; 

and 
person2.sex_info.sex = female; 

person2.sex_info.u.children = 4; 



 

 
 

 

 

�  2.2.3 Internal implementation of structures 

◦ The fields of a structure in memory will be stored 
in the same way using increasing address 
locations in the order specified in the structure 
definition. 

◦ Holes or padding may actually occur 
🞄 Within a structure to permit two consecutive components 

to be properly aligned within memory 

◦ The size of an object of a struct or union type is 
the amount of storage necessary to represent the 
largest component, including any padding that 
may be required. 
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�  2.2.4 Self-Referential Structures 

◦ One or more of its components is a pointer to 
itself.    

 

◦ typedef struct list { 
char data; 
list *link; 
} 

◦ list item1, item2, item3; 
item1.data=‘a’; 
item2.data=‘b’; 
item3.data=‘c’; 

Construct a list with three nodes 

item1.link=&item2; 

item2.link=&item3; 

malloc: obtain a node (memory) 

free: release memory 
 

 

 

 

item1.link=item2.link=item3.link=NULL; 



 

 

 

 

�  Ordered or Linear List Examples 

◦ ordered (linear) list: (item1, item2, item3, …, 

itemn) 

🞄 (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday) 

🞄 (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) 

🞄 (basement, lobby, mezzanine, first, second) 

🞄 (1941, 1942, 1943, 1944, 1945) 

🞄 (a1, a2, a3, …, an-1, an) 



 

 
 

�  Operations on Ordered List 

◦ Finding the length, n , of the list. 
◦ Reading the items from left to right (or right to 

left). 
◦ Retrieving the i’th element. 
◦ Storing a new value into the i’th position. 
◦ Inserting a new element at the position i , causing 

elements numbered i, i+1, …, n to become 
numbered i+1, i+2, …, n+1 

◦ Deleting the element at position i , causing 
elements numbered i+1, …, n to become 
numbered i, i+1, …, n-1 

�  Implementation 

◦ sequential mapping (1)~(4) 

◦ non-sequential mapping (5)~(6) 



 

 

 

 

�  Polynomial examples: 

◦ Two example polynomials are: 
🞄 A(x) = 3x20+2x5+4 and B(x) = x4+10x3+3x2+1 

◦ Assume that we have two polynomials, 
A(x) = aixi and B(x) = bixi where x is the variable, 
ai is the coefficient, and i is the exponent, then: 
🞄 A(x) + B(x) = (ai + bi)xi 

🞄 A(x) · B(x) = (aixi · (bjxj)) 
🞄 Similarly, we can define subtraction and division on 

polynomials, as well as many other operations. 



 

 

 

�  An ADT definition 
of a polynomial 



 

 

 

�  There are two ways to create the type 

polynomial in C 

�  Representation I 
◦ define MAX_degree 101 /*MAX degree of polynomial+1*/ 

typedef struct{ 

int degree; 

float coef [MAX_degree]; 

}polynomial; 
drawback: the first 

representation may 

waste space. 



 

Polynomial Addition 
 
 

 

 

 

◦ /* d =a + b, where a, b, and d are polynomials */ 
d = Zero( ) 
while (! IsZero(a) && ! IsZero(b)) do { 

switch COMPARE (Lead_Exp(a), Lead_Exp(b)) { 
case -1: d = 

Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b)); 
b = Remove(b, Lead_Exp(b)); 
break; 

case 0: sum = Coef (a, Lead_Exp (a)) + Coef ( b, Lead_Exp(b)); 
if (sum) { 

Attach (d, sum, Lead_Exp(a)); 
} 

a = Remove(a , Lead_Exp(a)); 
b = Remove(b , Lead_Exp(b)); 
break; 

case 1: d = 
Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a)); 
a = Remove(a, Lead_Exp(a)); 

} 
} 

advantage: easy implementation 
disadvantage: waste space when sparse 

insert any remaining terms of a or b into d 

*Program 2.4 :Initial version of padd function(p.62) 



 

 

 

 

�  Representation II 
◦ MAX_TERMS 100 /*size of terms array*/ 

typedef struct{ 

float coef; 

int expon; 

}polynomial; 

polynomial terms [MAX_TERMS]; 

int avail = 0; 



 

 
 

 
 

�  Use one global array to store all polynomials 

◦ Figure 2.2 shows how these polynomials are stored in 

the array terms. 

A(x) = 2x1000+1 

B(x) = x4+10x3+3x2+1 

specification representation 
poly <start, finish> 
A <0,1> 
B <2,5> 

storage requirements: start, finish, 2*(finish-start+1) 
non-sparse: twice as much as Representation I when all the items are nonzero 



 

 

 

�  We would now like to 
write a C function 
that adds two 
polynomials, 

A and B, represented 
as above to obtain D 
= A + B. 
◦ To produce D(x), padd 

(Program 2.5) adds A(x) and 
B(x) term by term. 

 

 

 

 

Analysis: O(n+m) 

where n (m) is the number 
of nonzeros in A (B). 



 

 
 
 

 

 
 

 

Problem: Compaction is required 

when polynomials that are no longer needed. 
(data movement takes time.) 



 

 
 

�  2.4.1 Introduction 

◦ In mathematics, a matrix contains m rows and n 
columns of elements, we write mn to designate a 
matrix with m rows and n columns. 

 

 

 

 

 

 

 

 
 

 

 
5*3 

15/15 8/36 

 

 

 
 

6*6 

sparse matrix 
data structure? 



 

 
 

�  The standard representation of a matrix is a 
two dimensional array defined as 
a[MAX_ROWS][MAX_COLS]. 

◦ We can locate quickly any element by writing a[i ][ j ] 

�  Sparse matrix wastes space 

◦ We must consider alternate forms of representation. 

◦ Our representation of sparse matrices should store 

only nonzero elements. 

◦ Each element is characterized by <row, col, value>. 



 

 

 
 

�  Structure 2.3 
contains our 
specification of 
the matrix ADT. 

◦ A minimal set of 
operations 
includes matrix 
creation, 
addition, 
multiplication, 
and transpose. 



 

 

 

�  We implement the Create operation as below: 
 

 



 

 
 

�  Figure 2.4(a) shows how the sparse matrix of 
Figure 2.3(b) is represented in the array a. 

◦ Represented by a two-dimensional array. 

◦ Each element is characterized by <row, col, value>. 

# of rows (col#umofnns)onzero terms 
 

 

 

 

 

 

 

 

 

transpose 
 
 

 

 

row, column in 
ascending order 



 

 

 

�  2.4.2 Transpose a Matrix 

◦ For each row i 
🞄 take element <i, j, value> and store it in element <j, i, value> 

of the transpose. 

🞄 difficulty: where to put <j, i, value> 
(0, 0, 15) ====> (0, 0, 15) 
(0, 3, 22) ====> (3, 0, 22) 
(0, 5, -15) ====> (5, 0, -15) 
(1, 1, 11) ====> (1, 1, 11) 

Move elements down very often. 

◦ For all elements in column j, 

place element <i, j, value> in element <j, i, value> 



 

. 

 

�  This algorithm is incorporated in transpose 
(Program 2.7) 

 

 

 

 

 

 

 

 

 

 

 

 
 

columns 
elements 

 

Scan the array 

“columns” times. 

The array has 

“elements” elements. 

 

==> O(columns*elements) 



 

 

�  Discussion: compared with 2-D array 
representation 

◦ O(columns*elements) vs. O(columns*rows) 
◦ elements --> columns * rows when non-sparse, 

O(columns2*rows) 

�  Problem: Scan the array “columns” times. 

◦ In fact, we can transpose a matrix represented as a 
sequence of triples in O(columns + elements) time. 

�  Solution: 

◦ First, determine the number of elements 
in each column of the original matrix. 

◦ Second, determine the starting positions of each 
row 
in the transpose matrix. 



 

 

�  Compared with 2-D array representation: 
O(columns+elements) vs. O(columns*rows) 
elements --> columns * rows O(columns*rows) 

Cost: 

Additional 
row_terms and 
starting_pos ar

c
r
o
ay
lu
s
mns 

 
are required. elements  
Let the two arrays 
row_terms andcolumns  
starting_pos be 

shared. elements 



 

 

�  After the execution of the third for loop, the 

values of row_terms and starting_pos are: 

[0] [1] [2] [3] [4] [5] 

row_terms = 2 1 2 2 0 1 

starting_pos = 1 3 4 6 8 8 

 

 

 
 

transpose 



 

and 0  j <  p. 

 
 

�  2.4.3 Matrix multiplication 

◦ Definition: 

Given A and B where A is mn and B is np, the 
product matrix D has dimension mp. Its <i, j> 
element is 

for 0  i < m 

◦ Example: 

dij 
n1 

aikbkj 

k 0 

 



 

used in the polynomial addition 

 
 

 

�  Sparse Matrix Multiplication 

◦ Definition: [D]m*p=[A]m*n* [B]n*p 

◦ Procedure: Fix a row of A and find all elements 
in column j of B for j=0, 1, …, p-1. 

◦ Alternative 1. 

Scan all of B to find all elements in j. 

◦ Alternative 2. 
Compute the transpose of B. 

(Put all column elements consecutively) 
🞄 Once we have located the elements of row i of A and 

column j of B we just do a merge operation similar to that 
of 2.2 



 

 

 

�  General case: 

dij=ai0*b0j+ai1*b1j+…+ai(n-1)*b(n-1)j 

◦ Array A is grouped by i, and after transpose, 
array B is also grouped by j 

 
 

d Sd  

e Se  

f Sf  

g Sg  

 

The generation at most: 
entries ad, ae, af, ag, bd, be, bf, bg, cd, ce, cf, cg 

Sc c 

Sb b 

Sa a 



 

 
 

�  An Example 

A = 1 0 2 BT = 3 -1 0 B = 3 0 2 

-1 4 6 0  0 0 -1 0 0 

2 0 5 0 0 5 
 
 

a[0] ro2 c3 va5l bt[0]ro3 c 3 va4l b[0]ro3 c3 va4l 
[1] w0 o0l ue1 bt[1]w0 ol0 ue3 b[1]w0 ol0 ue3 
[2] 0 2 2 bt[2] 0 1 -1 b[2] 0 2 2 
[3] 1 0 -1 bt[3] 2 0 2 b[3] 1 0 -1 
[4] 1 1 4 bt[4] 2 2 5 b[4] 2 2 5 
[5] 1 2 6 



 

 

�  The programs 2.9 and 2.10 can obtain the product 
matrix D which multiplies matrices A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a × b 



 

 



 

 
 

�  Analyzing the algorithm 

◦ cols_b * termsrow1 + totalb + 
cols_b * termsrow2 + totalb + 
… + 
cols_b * termsrowp + totalb 
= cols_b * (termsrow1 + termsrow2 + … + 

termsrowp)+ 
rows_a * totalb 
= cols_b * totala + row_a * totalb 

O(cols_b * totala + rows_a * totalb) 



 

 

�  Compared with matrix multiplication using 
array 
◦ for (i =0; i < rows_a; i++) 

for (j=0; j < cols_b; j++) { 
sum =0; 
for (k=0; k < cols_a; k++) 

sum += (a[i][k] *b[k][j]); 

} 
d[i][j] =sum; 

◦ O(rows_a * cols_a * cols_b) vs. 
O(cols_b * total_a + rows_a * total_b) 

◦ optimal case: 
total_a < rows_a * cols_a total_b < cols_a * 
cols_b 

◦ worse case: 
total_a --> rows_a * cols_a, or 
total_b --> cols_a * cols_b 



 

the array 



 
 

�  The internal representation of 
multidimensional arrays requires more 
complex addressing formula. 
◦ If an array is declared a[upper0][upper1]…[uppern], 

then it is easy to see that the number of 

elements in n1 

upperi 

is: 

Where  is thie0
 product of the upperi’s. 

◦ Example: 
🞄 If we declare a as a[10][10][10], then we require 

10*10*10 = 1000 units of storage to hold the array. 



 

 
 

�  Represent multidimensional arrays: 

row major order and column major order. 
◦ Row major order stores multidimensional arrays by 

rows. 
🞄 A[upper0][upper1] as 

upper0 rows, row0, row1, …, rowupper0-1, 
each row containing upper1 elements. 



 

 
 

�  Row major order: A[i][j] :  + i*upper1 + j 

�  Column major order: A[i][j] :  + j*upper0 

+ i 
 

col0 col1  colu1-1 
row0 A[0][0] A[0][1] . . . A[0][u1-1] 

  + u0 +(u1- 
1)* u0 

row1 
 

A[1][0] A[1][1] . . . A[1][u1-1] 

 + u1 

rowu0-1 

. . . 

A[u0-1][0] A[u0-1][1] . . . A[u0-1][u1-1] 

+(u0-1)*u1 



 

as the address of a[i][j][k]. 

 

 

�  To represent a three-dimensional array, 
A[upper0][upper1][upper2], we interpret the 
array as upper0 two-dimensional arrays of 
dimension upper1upper2. 

◦ To locate a[i][j][k], we first obtain  + 
i*upper1

*upper2 as the address of a[i][0][0] 
because there are i two dimensional arrays of 
size upper1*upper2 preceding this element. 

◦  + i*upper1*upper2+j *upper2+k 



 

 

 

�  Generalizing on the preceding discussion, we can 
obtain the addressing formula for any element 
A[i0][i1]…[in-1] in an n-dimensional array declared 
as: A[upper0][upper1]…[uppern-1] 

◦ The address for A[i0][i1]…[in-1] is: 
 
 



 

 

 

2.6.1 Introduction 

�  The String: component elements are 
characters. 

◦ A string to have the form, S = s0, …, sn-1, where 

si are characters taken from the character set of 

the programming language. 

◦ If n = 0, then S is an empty or null string. 

◦ Operations in ADT 2.4, p. 81 



 

 

 

�  ADT String: 



 

 

 

�  In C, we represent strings as character 
arrays terminated with the null character \0. 

 

 

�  Figure 2.8 shows how these strings would 
be represented internally in memory. 



 

 

 

�  Now suppose we want to concatenate these 
strings together to produce the new string: 

◦ Two strings are joined together by strcat(s, t), which stores 

the result in s. Although s has increased in length by five, 

we have no additional space in s to store the extra five 

characters. Our compiler handled this problem inelegantly: 

it simply overwrote the memory to fit in the extra five 

characters. Since we declared t immediately after s, this 

meant that part of the word “house” disappeared. 



 

 

 

�  C string 

functions 



 

 

 

�  Example 2.2[String insertion]: 

◦ Assume that we have two strings, say string 1 
and string 2, and that we want to insert string 2 
into string 1 starting at the i th position of string 
1. We begin with the declarations: 

◦ In addition to creating the two strings, we also 

have created a pointer for each string. 



 

 

 

�  Now suppose that the first string contains 
“amobile” and the second contains “uto”. 

◦ we want to insert “uto” 

starting at position 1 of 

the first string, thereby 

producing the word 

“automobile.’ 



 

 

 

�  String insertion function: 

◦ It should never be used in practice as it is 
wasteful in its use of time and space. 



 

 

 

 

�  2.6.2 Pattern Matching: 

◦ Assume that we have two strings, string and pat where pat 
is a pattern to be searched for in string. 

◦ If we have the following declarations: 
 

◦ Then we use the following statements to determine if pat is 

in string: 

 

 
◦ If pat is not in string, this method has a computing time of 

O(n*m) where n is the length of pat and m is the length of 
string. 



 

 

 

�  We can improve on an exhaustive pattern 
matching technique by quitting when 
strlen(pat) is greater than the number of 
remaining characters in the string. 



 

 

 

 

�  Example 2.3 [Simulation of nfind] 

◦ Suppose pat=“aab” 

and 

string=“ababbaabaa.” 

◦ Analysis of nfind: 

The computing time for 

these string is linear 
in the length of the 

string O(m), but the 

Worst case is still 

O(n.m). 



 

 

 

�  Ideally, we would like an algorithm that 
works in 

O(strlen(string)+strlen(pat)) time.This is 
optimal for this problem as in the worst 
case it is necessary to look at all characters 
in the pattern and string at least once. 

�  Knuth,Morris, and Pratt have developed a 
pattern matching algorithm that works in 
this way and has linear complexity. 



 

 

 

�  Suppose pat = “a b c a b c a c a b” 



 

comparing Si+1 and P0. 

 

 
 

 

�  From the definition of the failure function, we arrive at 
the following rule for pattern matching: if a partial match 
is found such that Si-j…Si-1=P0P1…Pj-1 and Si != Pj 
then matching may be resumed by comparing Si and Pf(j- 
1)+1 if j != 0 .If j= 0, then we may continue by 



 

 
 

 

�  This pattern matching rule translates into 
function pmatch. 



 

 

 

 

�  Analysis of pmatch: 

◦ The while loop is iterated until the end of either the 

string or the pattern is reached. Since i is never 
decreased, the lines that increase i cannot be executed 
more than m = strlen(string) times. The resetting of j to 
failure[j-1]+1 decreases j++ as otherwise, j falls off the 
pattern. Each time the statement j++ is executed, i is 
also incremented. So j cannot be incremented more 
than m times. Hence the complexity of function pmatch 
is O(m) = O(strlen(string)). 



 

 

 

 

◦ If we can compute the failure function in 
O(strlen(pat)) time, then the entire pattern 
matching process will have a computing time 
proportional to the sum of the lengths of the 
string and  pattern. Fortunately, there is a fast 
way to compute the failure function. This is based 
upon the following restatement of the failure 
function: 



 

 



 

 

 

 

 

 

 

 
 

 



 

 

 

�  Abstract Data Type as a design tool 

�  Concerns only on the important concept or 
model 

�  No concern on implementation details. 

�  Stack & Queue is an example of ADT 

�  An array is not ADT. 



 

 

 

�  Stack & Queue vs. Array 
◦ Arrays are data storage structures while stacks and 

queues are specialized DS and used as 
programmer’s tools. 

�  Stack – a container that allows push and pop 

�  Queue - a container that allows enqueue and 
dequeue 

�  No concern on implementation details. 

�  In an array any item can be accessed, while in 
these data structures access is restricted. 

�  They are more abstract than arrays. 



 

 

 

�  Array is not ADT 

�  Is Linked list ADT? 

�  Is Binary-tree ADT? 

�  Is Hash table ADT? 

�  What about graph? 



 

 

 

�  Allows access to only the last item inserted. 

�  An item is inserted or removed from the stack 
from one end called the “top” of the stack. 

�  This mechanism is called Last-In-First-Out 
(LIFO). 

A Stack Applet example 

http://www2.latech.edu/~box/ds/Stack/Stack.html


 

 

 

�  Placing a data item on the top is called 
“pushing”, while removing an item from the 
top is called “popping” it. 

�  push and pop are the primary stack 
operations. 

�  Some of the applications are : 
microprocessors, some older calculators etc. 



 

 

 

 

�  First example stack ADT and implementation 

C:\Documents and Settings\box\My 
Documents\CS\CSC\220\ReaderPrograms\ReaderFiles\Chap04\Stack\stack.ja 
va 

 

 

 

 

 

 

 

 

 

 

 

 

 

�  push and pop operations are performed in 
O(1) time. 



 

 

 
 

�  Reversed word 

�  What is it? 

�  ABC -> CBA 

C:\Documents and Settings\box\My 
Documents\CS\CSC\220\ReaderPrograms\ReaderFi 
les\Chap04\Reverse\reverse.java 



 

 

 

�  BracketChecker (balancer) 

�  A syntax checker (compiler) that understands 
a language containing any strings with 
balanced brackets ‘{‘ ‘[‘ ‘(‘ and ‘)’, ‘]’, ‘}’ 

◦ S -> Bl S1 Br 
◦ S1 -> Bl string Br 
◦ Bl -> ‘{‘ | ‘[‘ | ‘(‘ 
◦ Br -> ‘)’, | ‘]’, | ‘}’ 
C:\Documents and Settings\box\My 

Documents\CS\CSC\220\ReaderPrograms\ReaderFi 
les\Chap04\Brackets\brackets.java 



 

 

 

�  Queue is an ADT data structure similar to stack, 
except that the first item to be inserted is the first 
one to be removed. 

�  This mechanism is called First-In-First-Out (FIFO). 

�  Placing an item in a queue is called “insertion or 
enqueue”, which is done at the end of the queue 
called “rear”. 

�  Removing an item from a queue is called “deletion 
or dequeue”, which is done at the other end of the 
queue called “front”. 

�  Some of the applications are : printer queue, 
keystroke queue, etc. 



 

 

 

�  When a new item is inserted at the rear, the 
pointer to rear moves upwards. 

�  Similarly, when an item is deleted from the 
queue the front arrow moves downwards. 

�  After a few insert and delete operations the 
rear might reach the end of the queue and no 
more items can be inserted although the 
items from the front of the queue have been 
deleted and there is space in the queue. 



 

 

 

�  To solve this problem, queues implement 
wrapping around. Such queues are called 
Circular Queues. 

�  Both the front and the rear pointers wrap 
around to the beginning of the array. 

�  It is also called as “Ring buffer”. 

�  Items can inserted and deleted from a queue 
in O(1) time. 



 

 

 

 

 

 

 

 

 

 

 
 

 Queue 

-maxSize : int 

-queueArray [] : long 

-front : int 

-rear : int 

-nItems : int 

 +Queue() 

+insert() : void 

+remove() : long 

+peekFront() : long 

+isEmpty() : bool 

+isFull() : bool 

+size() : int 

  Interface1   

QueueApp 



 

 

 

�  C:\Documents and Settings\box\My 
Documents\CS\CSC\220\ReaderPrograms\Re 
aderFiles\Chap04\Queue\queue.java 



 

 

 

�  Normal queue (FIFO) 

�  Circular Queue (Normal Queue) 

�  Double-ended Queue (Deque) 

�  Priority Queue 



 

 

 

�  It is a double-ended queue. 

�  Items can be inserted and deleted from either 
ends. 

�  More versatile data structure than stack or 
queue. 

�  E.g. policy-based application (e.g. low priority 
go to the end, high go to the front) 

�  In a case where you want to sort the queue 
once in a while, What sorting algorithm will 
you use? 



 

 

 

�  More specialized data structure. 

�  Similar to Queue, having front and rear. 

�  Items are removed from the front. 

�  Items are ordered by key value so that the 
item with the lowest key (or highest) is always 
at the front. 

�  Items are inserted in proper position to 
maintain the order. 

�  Let’s discuss complexity 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  Interface1   

PriorityQApp 

PrioityQ 

-maxSize : int 

-queueArray [] : long 

-nItems : int 

+Queue() 

+insert() : void 

+remove() : long 

+peekMin() : long 

+isEmpty() : bool 

+isFull() : bool 



 

 

 

�  Used in multitasking operating system. 

�  They are generally represented using “heap” 
data structure. 

�  Insertion runs in O(n) time, deletion in O(1) 
time. 

�  C:\Documents and Settings\box\My 
Documents\CS\CSC\220\ReaderPrograms\Re 
aderFiles\Chap04\PriorityQ\priorityQ.java 



 

 

 

�  2 + 3 

�  2 + 4 * 5 

�  ((2 + 4) * 7) + 3* (9 – 5)) 

�  Infix vs postfix 

• 2 3 + 

• 2 4 5 * + 

• 2 4 + 7 * 3 9 5 - * + 

�  Why do we want to do this 
transformation? 



 

 

 

�  Read ch from input until empty 
◦ If ch is arg , output = output + arg 
◦ If ch is “(“, push ‘(‘; 
◦ If ch is op and higher than top push ch 

◦ If ch is “)” or end of input, 
🞄 output = output + pop() until empty or top is “(“ 

◦ Read next input 

�  C:\Documents and Settings\box\My 
Documents\CS\CSC\220\ReaderPrograms\Re 
aderFiles\Chap04\Postfix\postfix.java 



 

 

 

 

 

�  5 + 2 * 3 -> 5 2 3 * + 
�  Algorithm 
◦ While input is not empty 
◦ If ch is number , push (ch) 
◦ Else 

🞄 Pop (a) 
🞄 Pop(b) 
🞄 Eval (ch, a, b) 

�  C:\Documents and Settings\box\My 
Documents\CS\CSC\220\ReaderPrograms\Re 
aderFiles\Chap04\Postfix\postfix.java 
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�  Recursion is: 
◦ A problem-solving approach, that can ... 

◦ Generate simple solutions to ... 

◦ Certain kinds of problems that ... 

◦ Would be difficult to solve in other ways 

�  Recursion splits a problem: 

◦ Into one or more simpler versions of itself 



recursively search eleCmhapteer 7:nRecturssionafter the 8. 
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Strategy for searching a sorted array: 

 
 
 
 
 
 
 
 
 

1. if the array is empty 

2.  return -1 as the search result (not 
present) 

3. else if the middle element == target 

4.  return subscript of the middle 
element 

5. else if target < middle element 

6.  recursively search elements before 
middle 

7. else 
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1. if problem is “small enough” 

2. solve it directly 

3. else 

4.  break into one or more smaller 
subproblems 

5. solve each subproblem recursively 

6.  combine results into solution to whole 
problem 
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�  At least one “small” case that you can solve 
directly 

�  A way of breaking a larger problem down into: 
◦ One or more smaller subproblems 

◦ Each of the same kind as the original 

�  A way of combining subproblem results into an 
overall solution to the larger problem 
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�  Identify the base case(s) (for direct solution) 

�  Devise a problem splitting strategy 
◦ Subproblems must be smaller 

◦ Subproblems must work towards a base case 

�  Devise a solution combining strategy 
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Recursive algorithm for finding length of a string: 

1. if string is empty (no characters) 

2. return 0  base case 
3. else  recursive case 
4. compute length of string without first character 

5. return 1 + that length 

 
Note: Not best technique for this problem; illustrates the 

approach. 
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Recursive algorithm for finding length of a string: 

public static int length (String str) { 

if (str == null || 

str.equals(“”)) 

return 0; 

else 

return length(str.substring(1)) + 1; 

} 
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Recursive algorithm for printing a string: 
public static void printChars 

(String str) { 

if (str == null || 

str.equals(“”)) 

return; 

else 

System.out.println(str.charAt(0)); 

printChars(str.substring(1)); 

} 
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Recursive algorithm for printing a string? 
public static void printChars2 

(String str) { 

if (str == null || 

str.equals(“”)) 

return; 

else 

printChars2(str.substring(1)); 

System.out.println(str.charAt(0)); 

} 
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What does this do? 

public static int mystery (int n) { 

if (n == 0) 

return 0; 

else 

return n + mystery(n-1); 

} 
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Recall Proof by Induction: 
1. Prove the theorem for the base case(s): n=0 

2. Show that: 

🞄 If the theorem is assumed true for n, 

🞄 Then it must be true for n+1 

Result: Theorem true for all n ≥ 0. 
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Recursive proof is similar to induction: 
1. Show base case recognized and solved correctly 

2. Show that 

🞄 If all smaller problems are solved correctly, 

🞄 Then original problem is also solved 
correctly 

3. Show that each recursive case makes progress towards 

the base case  terminates properly 
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Overall 

result length(“ace”) 

 
 

 

 

3 
 return 1 + length(“ce”) 

 

 

 

2 
 return 1 + length(“e”)  

 

 

 

1 
return 1 + length(“”) 

0 
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�  Mathematicians often use recursive definitions 

�  These lead very naturally to recursive 
algorithms 

�  Examples include: 
◦ Factorial 

◦ Powers 

◦ Greatest common divisor 
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�  0! = 1 

�  n! = n x (n-1)! 
 

�  If a recursive function never reaches its base case, 
a stack overflow error occurs 
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public static int factorial (int n) { 

if (n == 0) // or: throw exc. if < 0 

return 1; 

else 

return n * factorial(n-1); 
} 
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�  x0 = 1 

�  xn = x  xn-1 

public static double power 

(double x, int n) { 

if (n <= 0) // or: throw exc. if < 0 
return 1; 

else 

return x * power(x, n-1); 
} 
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Definition of gcd(m, n), for integers m > n > 0: 
⚫ gcd(m, n) = n, if n divides m evenly 
⚫ gcd(m, n) = gcd(n, m % n), otherwise 

public static int gcd (int m, int n) { 
if (m < n) 

return gcd(n, m); 
else if (m % n == 0) // could check n>0 

return n; 
else 

return gcd(n, m % n); 

} 
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Definition of fibi, for integer i > 0: 

�  fib1 = 1 

�  fib2 = 1 

�  fibn = fibn-1 + fibn-2, for n > 2 
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public static int fib (int n) { 

if (n <= 2) 

return 1; 

else 

return fib(n-1) + fib(n-2); 
} 

 

This is straightforward, but an inefficient 
recursion ... 
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# calls apparently 

O(2n) – big! 
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public static int fibStart (int n) { 

return fibo(1, 0, n); 

} 
 

private static int fibo ( 
int curr, int prev, int n) { 

if (n <= 1) 

return curr; 

else 

return fibo(curr+prev, curr, n-1); 
} 
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Performance is O(n) 
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�  Towers of Hanoi 

�  Counting grid squares in a blob 

�  Backtracking, as in maze search 
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Goal: Move entire tower to another peg 

Rules: 

1. You can move only the top disk from a peg. 

2. You can only put a smaller on a larger disk 
(or on an empty peg) 
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move(n, src, dst, tmp) = 

if n == 1: move disk 1 from src to dst 

otherwise: 

move(n-1, src, tmp, dst) 

move disk n from src to dst 

move(n-1, tmp, dst, src) 
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public class TowersOfHanoi { 
public static String showMoves(int n, 

char src, char dst, char tmp) { 

if (n == 1) 
return “Move disk 1 from “ + src + 

“ to “ + dst + “\n”; 

else return 
showMoves(n-1, src, tmp, dst) + 

“Move disk “ + n + “ from “ + src + 

“ to “ + dst + “\n” + 

showMoves(n-1, tmp, dst, src); 

} 

} 
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How big will the string be for a tower of size n? 

We’ll just count lines; call this L(n). 

�  For n = 1, one line: L(1) = 1 

�  For n > 1, one line plus twice L for next smaller 
size: 
L(n+1) = 2 x L(n) + 1 

 

Solving this gives L(n) = 2n – 1 = O(2n) 

So, don’t try this for very large n – you will do a 
lot of string concatenation and garbage 
collection, and then run out of heap space and 



 

 

 

 

 

 

 

 
 

 



 

 

 

 

�  Linked lists 
◦ Abstract data type (ADT) 

�  Basic operations of linked lists 
◦ Insert, find, delete, print, etc. 

�  Variations of linked lists 
◦ Circular linked lists 

◦ Doubly linked lists 



 

node 

A 

data pointer 



 

 

 

 

 

Head 

�  A linked list is a series of connected nodes 

�  Each node contains at least 
◦ A piece of data (any type) 

◦ Pointer to the next node in the list 

�  Head: pointer to the first node 

�  The last node points to NULL 

C B A 



 

 
 

 

 

�  We use two classes: Node and List 

�  Declare Node class for the nodes 

◦ data: double-type data in this example 

◦ next: a pointer to the next node in the list 
 

 

 

 

class Node { 

public: 

double data; // data  

Node* next; // pointer to next 

}; 



 

 
 

 

�  Declare List, which contains 

◦ head: a pointer to the first node in the list. 
Since the list is empty initially, head is set to NULL 

◦ Operations on List 

class List { 

public: 

List(void) { head = NULL; } // constructor 

~List(void); // destructor 

 

bool IsEmpty() { return head == NULL; } 

Node* InsertNode(int index, double x); 

int FindNode(double x); 

int DeleteNode(double x); 

void DisplayList(void); 

private: 

Node* head; 

}; 



 

 
 

 

�  Operations of List 
◦ IsEmpty: determine whether or not the list is empty 

◦ InsertNode: insert a new node at a particular 

position 

◦ FindNode: find a node with a given value 

◦ DeleteNode: delete a node with a given value 

◦ DisplayList: print all the nodes in the list 



 

e 

 

 

 

 

�  Node* InsertNode(int index, double x) 

◦ Insert a node with data equal to x after the index’th 

elements. (i.e., when index = 0, insert the node as the first element; 

when index = 1, insert the node after the first element, and so on) 

◦ If the insertion is successful, return the inserted node. 

Otherwise, return NULL. 
(If index is < 0 or > length of the list, the insertion will fail.) 

�  Steps 
1. Locate index’th element 

2. Allocate memory for the new node 

3. Point the new node to its successor 

index’th 

element 
 

 

4. Point the new node’s predecessor to the new nod  
 
newNode 



 

 
 

 

 

 

 

�  Possible cases of InsertNode 
1. Insert into an empty list 

2. Insert in front 

3. Insert at back 

4. Insert in middle 

�  But, in fact, only need to handle two cases 
◦ Insert as the first node (Case 1 and Case 2) 

◦ Insert in the middle or at the end of the list (Case 3 

and Case 4) 



 

 
 

Node* List::InsertNode(int index, double x) { 

if (index < 0) return NULL; 

 

int currIndex = 1; 

Node* currNode = head; 

while (currNode && index > currIndex) { 

Try to locate 
index’th node. If it 

doesn’t exist, 
return NULL. 

currNode = currNode->next; 

currIndex++; 

} 

if (index > 0 && currNode == NULL) return NULL; 

 

Node* newNode = new Node; 

newNode->data = x; 

if (index == 0) { 

newNode->next = head; 

head = newNode; 

} 

else { 

 

 

} 

 

 

newNode->next = currNode->next; 

currNode->next = newNode; 

return newNode; 

} 



} 

else { 

newNode->next = 

currNode->next = 

currNode->next; 

newNode; 

} 

return newNode; 

} 

 

 

 

Node* List::InsertNode(int index, double x) { 

if (index < 0) return NULL; 

 

int currIndex = 1; 

Node* currNode = head; 

while (currNode && index > currIndex) { 

currNode = currNode->next; 

currIndex++; 

} 

if (index > 0 && currNode == NULL) return NULL; 

 

Node* newNode = new Node; 

newNode->data = x; 

if (index == 0) { 

newNode->next = head; 

head = newNode; 
Create a new node 



} 

else { 

newNode->next = 

currNode->next = 

currNode->next; 

newNode; 
newNode 

} 

return newNode; 

} 

 

 

 

Node* List::InsertNode(int index, double x) { 

if (index < 0) return NULL; 
 
 

int currIndex = 1; 

Node* currNode = head; 

while (currNode && index > currIndex) { 

currNode =  currNode->next; 

currIndex++;   

}   

if (index > 0 && currNode == NULL) return NULL; 
 

Insert as first element 

head 

Node* newNode 

newNode->data 

if (index == 0 

= 

= 

) { 

new 

x; 

Node; 

newNode->next = head; 

head = newNode; 

 



 

 

 

Node* List::InsertNode(int index, double x) { 

if (index < 0) return NULL; 
 
 

int currIndex = 1; 

Node* currNode = head; 

while (currNode && index > currIndex) { 

currNode = 

currIndex++; 

} 

if (index > 0 && currNode 

 

 

 

== 

currNode->next; 

 

 

NULL) return NULL; 

 

Node* newNode 

newNode->data 

 

= 

= 

 

new 

x; 

 

Node; 

if (index == 0) { 

newNode->next = head; 

head = newNode; 

} 

else { 

 

 

 

 

currNode 

newNode->next = currNode->next; 

currNode->next = newNode; 

} 

return newNode; 

} 

 
newNode 

Insert after currNode 



 

return 0; 

} 

 
 

 
 

�  int FindNode(double x) 

◦ Search for a node with the value equal to x in the list. 

◦ If such a node is found, return its position. Otherwise, 
return 0. 

 

 

int List::FindNode(double x) { 

Node* currNode = head; 

int currIndex = 1; 

while (currNode && currNode->data != x) { 

currNode = currNode->next; 

currIndex++; 

} 

if (currNode) return currIndex; 



 

 
 

 

 

 

�  int DeleteNode(double x) 

◦ Delete a node with the value equal to x from the list. 

◦ If such a node is found, return its position. Otherwise, 
return 0. 

�  Steps 

◦ Find the desirable node (similar to FindNode) 

◦ Release the memory occupied by the found node 

◦ Set the pointer of the predecessor of the found node to 
the successor of the found node 

�  Like InsertNode, there are two special cases 

◦ Delete first node 

◦ Delete the node in middle or at the end of the list 



 

 

 

int List::DeleteNode(double x) { 

 

 

 

 

 

 

 

if (currNode) { 

if (prevNode) { 

prevNode->next = currNode->next; 

delete currNode; 

} 

else { 

 

 

} 

 

 

head = currNode->next; 

delete currNode; 

return currIndex; 

} 

return 0; 

} 

 Try to find the node with 
Node* prevNode = NULL; 

Node* currNode = head; 
int currIndex = 1; 

its value equ al to x 

while (currNode && currNode->data != x) { 

prevNode = currNode; 

currNode = currNode->next; 

currIndex++; 

} 

 

 



 

 
 

 

int List::DeleteNode(double x) { 

Node* prevNode = NULL; 

Node* currNode = head; 

int currIndex = 1; 

while (currNode && currNode->data != x) { 

prevNode = currNode; 

currNode = currNode->next; 

currIndex++; 

} 

prevNode currNode 

if (currNode) { 

if (prevNode) { 

prevNode->next = 

delete currNode; 

 

 

currNode->next; 

} 

else { 

 

 

} 

 

 

head = currNode->next; 

delete currNode; 

return currIndex; 

} 

return 0; 

} 



 

 
 

 

int List::DeleteNode(double x) { 

Node* prevNode = NULL; 

Node* currNode = head; 

int currIndex = 1; 

while (currNode && currNode->data != x) { 

prevNode = currNode; 

currNode = currNode->next; 

currIndex++; 

} 

if (currNode) { 

if (prevNode) { 

prevNode->next = currNode->next; 

delete currNode; 

} 

else { 

head = currNode->next; 

delete currNode; 

} 

return currIndex; 

} 

return 0; 

head currNode 

} 



 

 
 

 

 

 

�  void DisplayList(void) 

◦ Print the data of all the elements 

◦ Print the number of the nodes in the list 
 
 

void List::DisplayList() 

{ 

int num = 0; 

Node* currNode = head; 

while (currNode != NULL){ 

cout << currNode->data << endl; 

currNode = currNode->next; 

num++; 

} 

cout << "Number of nodes in the list: " << num << endl; 

} 



 

 
 

 

 

 

�  ~List(void) 

◦ Use the destructor to release all the memory used by the 
list. 

◦ Step through the list and delete each node one by one. 

List::~List(void) { 

Node* currNode = head, *nextNode = NULL; 

while (currNode != NULL) 

{ 

nextNode = currNode->next; 

// destroy the current node 

delete currNode; 

currNode = nextNode; 

} 

} 
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7 result 
5 

 
 
 
int main(void) 

{ 

List list; 

Number of nodes in the list: 3 

5.0 found 

4.5 not found 

6 

5 

Number of nodes in the list: 2 

list.InsertNode(0, 7.0); // successful 

list.InsertNode(1, 5.0); // successful 

list.InsertNode(-1, 5.0); // unsuccessful 

list.InsertNode(0, 6.0); // successful 

list.InsertNode(8, 4.0); // unsuccessful 

// print all the elements   

list.DisplayList();   

if(list.FindNode(5.0) > 0) cout << "5.0 found" << endl; 

else cout << "5.0 not found" << endl; 

if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl; 

else cout << "4.5 not found" << endl; 

list.DeleteNode(7.0); 

list.DisplayList(); 

return 0; 

} 



 

C B A 

 
 

 

 

�  Circular linked lists 

◦ The last node points to the first node of the list 
 

 

Head 

◦ How do we know when we have finished 
traversing the list? (Tip: check if the pointer of 
the current node is equal to the head.) 



 

 

 

 

�  Doubly linked lists 

◦ Each node points to not only successor but the 
predecessor 

◦ There are two NULL: at the first and last nodes in 
the list 

◦ Advantage: given a node, it is easy to visit its 
predecessor. Convenient to traverse lists 
backwards 

Head 

C B A 



 

to reset some pointers. 

 

 

 

 

 

�  Linked lists are more complex to code and 
manage than arrays, but they have some distinct 
advantages. 

◦ Dynamic: a linked list can easily grow and shrink in size. 
🞄 We don’t need to know how many nodes will be in the list. 

They are created in memory as needed. 

🞄 In contrast, the size of a C++ array is fixed at compilation 
time. 

◦ Easy and fast insertions and deletions 

🞄 To insert or delete an element in an array, we need to copy 
to temporary variables to make room for new elements or 
close the gap caused by deleted elements. 

🞄 With a linked list, no need to move other nodes. Only need 



 

 

 

 

 head 

 
�  Follow the previous steps 

 // 

 

and we get 
 

 Step 1 

Step 2 

 

 Step 3 

 head  93 

 48  17  142 



 

 
 
 

�  Insertion at the top of the list 

�  Insertion at the end of the list 

�  Insertion in the middle of the list 



 

 

 

 

Steps: 

�  Create a Node 

�  Set the node data Values 

�  Connect the pointers 



 

 

 

 

 head

 
�  Follow the previous steps 

 // 

 

and we get 
 

 Step 1 

Step 2 

 

 Step 3 

 48  17  142 



 

 
 
 

�  Insertion at the top of the list 

�  Insertion at the end of the list 

�  Insertion in the middle of the list 



 

 

 

 

Steps: 

�  Create a Node 

�  Set the node data Values 

�  Break pointer connection 

�  Re-connect the pointers 



 

 

 
 

 
 

 Step 1 

Step 2

 
 Step 3 

 

 

 

 Step 4 



 

 
 

 

�  Introduction 

�  Insertion Description 

�  Deletion Description 

�  Basic Node Implementation 

�  Conclusion 



 

 

 

�  Deleting from the top of the list 

�  Deleting from the end of the list 

�  Deleting from the middle of the list 



 

 

 

�  Deleting from the top of the list 

�  Deleting from the end of the list 

�  Deleting from the middle of the list 



 

 

 

Steps 

�  Break the pointer connection 

�  Re-connect the nodes 

�  Delete the node 



 

 head 

 head 

 42  17 4 

4 6 

6 4  17  42 

 17  42 

 

 

 

 head 
 

 

 
 
 
 
 
 



 

 
 
 

�  Deleting from the top of the list 

�  Deleting from the end of the list 

�  Deleting from the middle of the list 



 

 

 

Steps 

�  Break the pointer connection 

�  Set previous node pointer to NULL 

�  Delete the node 



 

6 4  17 

 

 

 

 head 
 
 
 
 

 

 head 
 

 

 

 head 

   

 17 4 6 

 17  42 

 42 

4 6 



 

 
 
 

�  Deleting from the top of the list 

�  Deleting from the end of the list 

�  Deleting from the middle of the list 



 

 

 

Steps 

�  Set previous Node pointer to next node 

�  Break Node pointer connection 

�  Delete the node 



 

 42 4 

4  17  42 

 

 
 

 head 
 
 

 

 

 head 
 
 
 
 
 

 head 

4  17  42 



 

 
 
 

The following code is written in C++: 

Struct Node 

{ 

int data; //any type of data could be another 

struct 

Node *next; //this is an important piece of code 

“pointer” 

}; 
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�  In a linked representation of a binary tree, 
the number of null links (null pointers) are 
actually more than non-null pointers. 

�  Consider the following binary tree: 



 

 

 

 
 

�  In above binary tree, there are 7 null pointers 
& actual 5 pointers. 

�  In all there are 12 pointers. 

�  We can generalize it that for any binary tree 
with n nodes there will be (n+1) null pointers 
and 2n total pointers. 

�  The objective here to make effective use of 
these null pointers. 

�  A. J. perils & C. Thornton jointly proposed idea 
to make effective use of these null pointers. 

�  According to this idea we are going to replace 
all the null pointers by the appropriate pointer 
values called threads. 



 

 

 

 

 

�  And binary tree with such pointers are called 
threaded tree. 

�  In the memory representation of a threaded 
binary tree, it is necessary to distinguish 
between a normal pointer and a thread. 



 

 

 

 

 

 Therefore we have an alternate node 
representation for a threaded binary tree 
which contains five fields as show bellow: 



 

 

 

 

 

�  Also one may choose a one-way threading or a 
two-way threading. 

�  Here, our threading will correspond to the in 
order traversal of T. 



 

 

 

 

�  Accordingly, in the one way threading of T, a 
thread will appear in the right field of a node 
and will point to the next node in the in-order 
traversal of T. 

�  See the bellow example of one-way in-order 
threading. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K 



 

 
 

 

�  In the two-way threading of T. 

�  A thread will also appear in the left field of a 
node and will point to the preceding node in 
the in-order traversal of  tree T. 

�  Furthermore, the left pointer of the first node 
and the right pointer of the last node (in the 
in-order traversal of T) will contain the null 
value when T does not have a header node. 



 

 

 

 

 

�  Bellow figure show two-way in-order 
threading. 

�  Here, right pointer=next node of in-order 
traversal and left pointer=previous node of 
in-order traversal 

�  Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K 



 

 



 

 

 

 

�  Again two-way threading has left pointer of 
the first node and right pointer of the last 
node (in the inorder traversal of T) will 
contain the null value when T will point to 
the header nodes is called two-way threading 
with header node threaded binary tree. 



 

node. 

 

 

 

 

�  Bellow figure to explain two-way threading with 
header 



 

 

 

 

 

�  Bellow example of link representation of 
threading binary tree. 

�  In-order traversal of bellow tree: 
G,F,B,A,D,C,E 



 

 



 

 

 

 
 

�  Advantages of threaded binary tree: 

�  Threaded binary trees have numerous 
advantages over non-threaded binary trees 
listed as below: 

◦ The traversal operation is more faster than that of its 
unthreaded version, because with threaded binary tree 
non-recursive implementation is possible which can 
run faster and does not require the botheration of 
stack management. 



 

 

 

 
 

�  Advantages of threaded binary tree: 

◦ The second advantage is more understated with a 
threaded binary tree, we can efficiently determine the 
predecessor and successor nodes starting from any 
node. In case of unthreaded binary tree, however, 
this task is more time consuming and difficult. For 
this case a stack is required to provide upward 
pointing information in the tree whereas in a 
threaded binary tree, without having to include the 
overhead of using a stack mechanism the same can 
be carried out with the threads. 



 

 

 

 
 

�  Advantages of threaded binary tree: 

◦ Any node can be accessible from any other node. 
Threads are usually more to upward whereas links 
are downward. Thus in a threaded tree, one can move 
in their direction and nodes are in fact circularly 
linked. This is not possible in unthreaded counter 
part because there we can move only in downward 
direction starting from root. 

◦ Insertion into and deletions from a threaded tree are 
although time consuming operations but these are 
very easy to implement. 



 

 

 

 

 

�  Disadvantages of threaded binary tree: 

◦ Insertion and deletion from a threaded tree are very 
time consuming operation compare to non-threaded 
binary tree. 

◦ This tree require additional bit to identify the 

threaded link. 



 

 

 

 

 

 



 

 

 
 

�  Property1: each node can have up to two 
successor nodes (children) 

◦ The predecessor node of a node is called its parent 
◦ The "beginning" node is called the root (no parent) 

◦ A node without children is called a leaf 

 20 

 21 

 22 

 23 
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A Tree Has a Root Node 
 

 

 

 

 

ROOT NODE Owner 

Jake 
 

 

 

Manager 

Brad 

 
Carol 

Chef 

 

 

 

 

Waitress 

Joyce 

Waiter 

Chris 

Cook 

Max 

Helper 

Len 
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Owner 

Jake 

Manager 

Brad 

Chef 

Carol 

Waitress 

Joyce 

Waiter 

Chris 

Cook 

Max 

Helper 

Len 

Leaf nodes have no children 

 

 

 

 

 

 

LEAF NODES 



 

 
 

 

 

 

 

�  Property2: a unique path exists from the 
root to every other node 



 

 
 

�  Ancestor of a node: any node on the path from 

the root to that node 

�  Descendant of a node: any node on a path from 
the node to the last node in the path 

�  Level (depth) of a node: number of edges in the 
path from the root to that node 

�  Height of a tree: number of levels (warning: 
some books define it as #levels - 1) 
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A Tree Has Levels 
 

 

 

 

 

LEVEL 0 Owner 

Jake 
 

 

 

Manager 

Brad 

 
Carol 

Chef 

 

 

 

 

Waitress 

Joyce 

Waiter 

Chris 

Cook 

Max 

Helper 

Len 
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Level One 
 

 

 

 

 

 

 

 

 

 

 

 

 

LEVEL 1 

Owner 

Jake 

Manager 

Brad 

Chef 

Carol 

Waitress 

Joyce 

Waiter 

Chris 

Cook 

Max 

Helper 

Len 
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Level Two 
 

 

 

 

 

Owner 

Jake 
 

 

 

Manager 

Brad 

 
Carol 

Chef 

 
 

LEVEL 2  
Waitress Waiter Cook Helper 

Joyce Chris Max Len 
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Owner 

Jake 

Manager 

Brad 

Chef 

Carol 

Waitress 

Joyce 

Waiter 

Chris 

Cook 

Max 

Helper 

Len 

A Subtree 
 

 

 

 

 

LEFT SUBTREE OF ROOT NODE 
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Owner 

Jake 

Manager 

Brad 

Chef 

Carol 

Waitress 

Joyce 

Waiter 

Chris 

Cook 

Max 

Helper 

Len 

Another Subtree 
 

 

 

 

 

RIGHT SUBTREE 

OF ROOT NODE 



 

 
 

 

 

 

 

 

l 2l 

N  20  21  ...  2h1  2h 1 
l=0 l=1 l=h-1 

using the geometric series: 

x 0 x  ...  x 1 n1 
i0 

n1 

x i x n 

x1 
1 



 

max height of a tree with N nodes 
e as a linked list) 

 
 

 

 

 

 

2
h
 1 

 2
h
 

N 

N  1 
�  The    
(sam h  log(N  1)  O(log N ) 

is N 

�  The min height of a tree with N nodes is 

log(N+1) 





 

 



 

 
 
 

(1) Start at the root 

(2) Search the tree level by level, until you 
find the element you are searching for 

(O(N) time in worst case) 

Is this better than searching a linked list? 

No ---> O(N) 



 

 

 

�  Binary Search Tree Property: The value stored 
at a node is greater than the value stored at 
its left child and less than the value stored at 
its right child 

�  Thus, the value stored at the root of a subtree 
is greater than any value in its left subtree 
and less than any value in its right subtree!! 



 

 



 

 

 

(1) Start at the root 

(2) Compare the value of the item you are 
searching for with the value stored at the 
root 

(3) If the values are equal, then item found; 
otherwise, if it is a leaf node, then not found 



 

 
 

 

(4) If it is less than the value stored at the 
root, then search the left subtree 
(5) If it is greater than the value stored at 
the root, then search the right subtree 

(6) Repeat steps 2-6 for the root of the 
subtree chosen in the previous step 4 or 5 

Is this better than searching a linked list? 

Yes !! ---> O(logN) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

template<class ItemType> 
struct TreeNode { 

ItemType info; 
TreeNode* left; 
TreeNode* right; }; 



 

 
 

 

#include <fstream.h> 

template<class ItemType> 
struct TreeNode; 

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER}; 

template<class ItemType> 
class TreeType { 
public: 
TreeType(); 
~TreeType(); 
TreeType(const TreeType<ItemType>&); 
void operator=(const TreeType<ItemType>&); 
void MakeEmpty(); 
bool IsEmpty() const; 
bool IsFull() const; 
int NumberOfNodes() const; (continues) 



 

 
 

 

 

(cont.) 
void RetrieveItem(ItemType&, bool& found); 
void InsertItem(ItemType); 
void DeleteItem(ItemType); 
void ResetTree(OrderType); 
void GetNextItem(ItemType&, OrderType, bool&); 
void PrintTree(ofstream&) const; 

private: 
TreeNode<ItemType>* root; 

}; 

 

}; 



 

 
 

 

�  Recursive implementation 

#nodes in a tree = 
#nodes in left subtree + #nodes in right 

subtree + 1 

�  What is the size factor? 

Number of nodes in the tree we are examining 

�  What is the base case? 

The tree is empty 

�  What is the general case? 

CountNodes(Left(tree)) + CountNodes(Right(tree)) 

+ 1 



 

} 

 

 

 
 

template<class ItemType> 
int TreeType<ItemType>::NumberOfNodes() const 
{ 
return CountNodes(root); 

} 
 

template<class ItemType> 
int CountNodes(TreeNode<ItemType>* tree) 
{ 
if (tree == NULL) 
return 0; 

else 
return CountNodes(tree->left) + CountNodes(tree->right) + 1; 



 

 
 
 
 
 

 

Let’s consider the first few steps: 



 

 



 

 
 
 

�  What is the size of the problem? 
Number of nodes in the tree we are examining 

�  What is the base case(s)? 

1) When the key is found 

2) The tree is empty (key was not found) 

�  What is the general case? 

Search in the left or right subtrees 



 

 

 

template <class ItemType> 
void TreeType<ItemType>:: RetrieveItem(ItemType& item,bool& found) 
{ 

Retrieve(root, item, found); 
} 

 

template<class ItemType> 
void Retrieve(TreeNode<ItemType>* tree,ItemType& item,bool& found) 
{ 

if (tree == NULL) // base case 2 
found = false; 

else if(item < tree->info) 
Retrieve(tree->left, item, found); 
else if(item > tree->info) 
Retrieve(tree->right, item, found); 
else { // base case 1 
item = tree->info; 
found = true; 

} 

} 



 

 
 
 
 

 
 
 

�  Use the 
binary 
search tree 
property to 
insert the 
new item at 
the correct 
place 



 

Function 

InsertItem 

(cont.) 

• 
 

 

 

 

 

 

 

Insert 11 



 

 

 

 

 

 
 

 

 

�  What is the size of the problem? 
Number of nodes in the tree we are examining 

�  What is the base case(s)? 
The tree is empty 

�  What is the general case? 

Choose the left or right subtree 



 

 
 

template<class ItemType> 
void TreeType<ItemType>::InsertItem(ItemType item) 
{ 
Insert(root, item); 

} 

template<class ItemType> 
void Insert(TreeNode<ItemType>*& tree, ItemType item) 
{ 
if(tree == NULL) { // base case 
tree = new TreeNode<ItemType>; 
tree->right = NULL; 
tree->left = NULL; 
tree->info = item; 

} 
else if(item < tree->info) 
Insert(tree->left, item); 
else 
Insert(tree->right, item); 

} 



 

 
 
 
 

Insert 11 



 

 
 

�  Yes, certain orders produce very unbalanced 
trees!! 

�  Unbalanced trees are not desirable because 
search time increases!! 

�  There are advanced tree structures (e.g.,"red- 
black trees") which guarantee balanced trees 



 

 
 

Does the 

order of 

inserting 

elements 

into a tree 

matter? 

(cont.) 



 

 

 
 

 

 

 

�  First, find the item; then, delete it 

�  Important: binary search tree property 
must be preserved!! 

�  We need to consider three different cases: 

(1) Deleting a leaf 

(2) Deleting a node with only one child 

(3) Deleting a node with two children 



 

 



 

 



 

 



 

 

 

 

 

 

�  Find predecessor (it is the rightmost node 
in the left subtree) 

�  Replace the data of the node to be deleted 
with predecessor's data 

�  Delete predecessor node 



 

 

 

 

 

 

�  What is the size of the problem? 
Number of nodes in the tree we are examining 

�  What is the base case(s)? 
Key to be deleted was found 

�  What is the general case? 

Choose the left or right subtree 



 

 

 

 

template<class ItemType> 
void TreeType<ItmeType>::DeleteItem(ItemType item) 
{ 
Delete(root, item); 

} 
 

template<class ItemType> 
void Delete(TreeNode<ItemType>*& tree, ItemType item) 
{ 
if(item < tree->info) 
Delete(tree->left, item); 
else if(item > tree->info) 
Delete(tree->right, item); 
else 
DeleteNode(tree); 

} 



 

 
 

template <class ItemType> 
void DeleteNode(TreeNode<ItemType>*& tree) 
{ 

ItemType data; 
TreeNode<ItemType>* tempPtr; 

tempPtr = tree; 
if(tree->left == NULL) { //right child 
tree = tree->right; 
delete tempPtr; 

} 

0 or 1 child 

else if(tree->right == NULL) { // left child 
tree = tree->left; 
delete tempPtr; 

} 
0 or 1 child 

else { 
GetPredecessor(tree->left, data); 
tree->info = data; 
Delete(tree->left, data); 

} 
} 

2 children 



 

 
 

 

 

 

 

 

template<class ItemType> 

void GetPredecessor(TreeNode<ItemType>* tree, ItemType& data) 

{ 

while(tree->right != NULL) 

tree = tree->right; 

data = tree->info; 

} 



 

 
 
 
 
 

 
 
 
 

There are mainly three ways to traverse a 
tree: 

Inorder Traversal 

Postorder Traversal 

Preorder Traversal 



 

 

 

 

 

 
 

tree 
 

 

 

 

‘J’ 
 

 

 

‘E’ ‘T’ 
 

 
 

    
 

 

 

 

 

 

Visit left subtree first Visit right subtree last 
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‘Y’ ‘M’ ‘H’ ‘A’ 



 

 

 
 
 

�  Visit the nodes in the left subtree, then 
visit the root of the tree, then visit the 
nodes in the right subtree 

Inorder(tree) 

If tree is not NULL 
Inorder(Left(tree)) 
Visit Info(tree) 
Inorder(Right(tree)) 

 
(Warning: "visit" means that the algorithm 
does something with the values in the 
node, e.g., print the value) 
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Postorder 
 

 

 

tree 
 

 

 

 

‘J’ 
 

 

 

‘E’ ‘T’ 
 

 
 

    
 

 

 

 

 

 

Visit left subtree first Visit right subtree second 

‘Y’ ‘M’ ‘H’ ‘A’ 



 

 

 
 

 

�  Visit the nodes in the left subtree first, 
then visit the nodes in the right subtree, 
then visit the root of the tree 

Postorder(tree) 

If tree is not NULL 

Postorder(Left(tree)) 

Postorder(Right(tree)) 

Visit Info(tree) 
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tree 
 

 

 

 

‘J’ 
 

 

 

‘E’ ‘T’ 
 

 
 

    
 

 

 

 

 

 

Visit left subtree second Visit right subtree last 

‘Y’ ‘M’ ‘H’ ‘A’ 



 

 

 
 

 

�  Visit the root of the tree first, then visit the 
nodes in the left subtree, then visit the 
nodes in the right subtree 

Preorder(tree) 

If tree is not NULL 

Visit Info(tree) 

Preorder(Left(tree)) 

Preorder(Right(tree)) 



 

 



 

 

 
 

 

�  We use "inorder" to print out the node values 

�  Why?? (keys are printed out in ascending 
order!!) 

�  Hint: use binary search trees for sorting !! 



 

and >>) 

 

 

void TreeType::PrintTree(ofstream& outFile) 
{ 
Print(root, outFile); 

} 

template<class ItemType> 
void Print(TreeNode<ItemType>* tree, ofstream& outFile) 
{ 
if(tree != NULL) { 
Print(tree->left, outFile); 
outFile << tree->info; 
Print(tree->right, outFile); 

} 
} 

(see textbook for overloading << 



 

 

 

 

 

 

 

template<class ItemType> 

TreeType<ItemType>::TreeType() 

{ 

root = NULL; 

} 



 

 



} 
} 

 

 

 
 

�  Delete the tree in a "bottom-up" fashion 

�  Postorder traversal is appropriate for this 

!! 
TreeType::~TreeType() 
{ 

Destroy(root); 
} 

void Destroy(TreeNode<ItemType>*& tree) 
{ 

if(tree != NULL) { 
Destroy(tree->left); 
Destroy(tree->right); 
delete tree; 



 

 



} 
} 

 

 
 
 

template<class ItemType> 
TreeType<ItemType>::TreeType(const TreeType<ItemType>& 

originalTree) 
{ 
CopyTree(root, originalTree.root); 

} 
 

  template<class ItemType)  
void CopyTree(TreeNode<ItemType>*& copy, 

TreeNode<ItemType>* originalTree) 
{ 
if(originalTree == NULL) 
copy = NULL; 

else { 
copy = new TreeNode<ItemType>; 
copy->info = originalTree->info; 
CopyTree(copy->left, originalTree->left); 
CopyTree(copy->right, originalTree->right); 

 
 
 
 

 
preorder 



 

 

 
 

 

�  The user is allowed to specify the tree 
traversal order 

�  For efficiency, ResetTree stores in a queue 
the results of the specified tree traversal 

�  Then, GetNextItem, dequeues the node 
values from the queue 



 

 

 

 

 

 

 

 
 

enum OrderType {PRE_ORDER, IN_ORDER, 
POST_ORDER}; 

 

template<class ItemType> 
class TreeType { 
public: 
// same as before 

private: 
TreeNode<ItemType>* root; 
QueType<ItemType> preQue; 
QueType<ItemType> inQue; 
QueType<ItemType> postQue; 

}; 

new private data 



 

 
 

 

template<class ItemType> 
void PreOrder(TreeNode<ItemType>*, 

QueType<ItemType>&); 

template<class ItemType> 
void InOrder(TreeNode<ItemType>*, 

QueType<ItemType>&); 

template<class ItemType> 
void PostOrder(TreeNode<ItemType>*, 

QueType<ItemType>&); 



 

 
 
 
 
 
 

template<class ItemType> 
void PreOrder(TreeNode<ItemType>tree, 

QueType<ItemType>& preQue) 
{ 
if(tree != NULL) { 
preQue.Enqueue(tree->info); 
PreOrder(tree->left, preQue); 
PreOrder(tree->right, preQue); 

} 
} 



 

 
 
 
 
 
 
 

template<class ItemType> 
void InOrder(TreeNode<ItemType>tree, 

QueType<ItemType>& inQue) 
{ 
if(tree != NULL) { 
InOrder(tree->left, inQue); 
inQue.Enqueue(tree->info); 
InOrder(tree->right, inQue); 

} 
} 



 

 

template<class ItemType> 

void PostOrder(TreeNode<ItemType>tree, 

QueType<ItemType>& postQue) 

{ 

if(tree != NULL) { 

PostOrder(tree->left, postQue); 

PostOrder(tree->right, postQue); 

postQue.Enqueue(tree->info); 

} 

} 



 

 
 
 
 
 

 

template<class ItemType> 
void TreeType<ItemType>::ResetTree(OrderType order) 
{ 
switch(order) { 
case PRE_ORDER: PreOrder(root, preQue); 

break; 
case IN_ORDER: InOrder(root, inQue); 

break; 
case POST_ORDER: PostOrder(root, postQue); 

break; 
} 

} 



 

 

 

template<class ItemType> 
void TreeType<ItemType>::GetNextItem(ItemType& item, 

OrderType order, bool& finished) 
{ 

finished = false; 
switch(order) { 
case PRE_ORDER: preQue.Dequeue(item); 

if(preQue.IsEmpty()) 
finished = true; 
break; 

case IN_ORDER: inQue.Dequeue(item); 
if(inQue.IsEmpty()) 
finished = true; 

break; 

case POST_ORDER: postQue.Dequeue(item); 
if(postQue.IsEmpty()) 
finished = true; 
break; 

} 
} 



 

 
 
 
 
 
 
 

 

 
 

�  See textbook 



 

 

 
 

Big-O Comparison 

Operation 
Binary 

Search Tree 

Array- 
based List 

Linked 

List 

Constructor O(1) O(1) O(1) 

Destructor O(N) O(1) O(N) 

IsFull O(1) O(1) O(1) 

IsEmpty O(1) O(1) O(1) 

RetrieveItem O(logN) O(logN) O(N) 

InsertItem O(logN) O(N) O(N) 

DeleteItem O(logN) O(N) O(N) 



 

 

 

 

 

 

 

 
 

 

 

 

�  1-3, 8-18, 21, 22, 29-32 
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Definition 

 A graph G consists of two sets 

– a finite, nonempty set of vertices V(G) 

– a finite, possible empty set of edges E(G) 

– G(V,E) represents a graph 

 An undirected graph is one in which the pair of 

vertices in a edge is unordered, (v0, v1) = (v1,v0) 

 A directed graph is one in which each edge is a 

directed pair of vertices, <v0, v1> != <v1,v0> 

tail head 
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Examples for Graph 
0 0 0 

 

1 2 1 2 
1 

3 
3 4 5 6 

G1 
G 

2 

complete graph 
2 

incomplete graph G3 

V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)} 

V(G2)={0,1,2,3,4,5,6} E(G2)={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)} 

V(G3)={0,1,2} E(G3)={<0,1>,<1,0>,<1,2>} 

complete undirected graph: n(n-1)/2 edges 

complete directed graph: n(n-1) edges 
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Complete Graph 
 

 A complete graph is a graph that has the 

maximum number of edges 

– for undirected graph with n vertices, the maximum 

number of edges is n(n-1)/2 

– for directed graph with n vertices, the maximum 

number of edges is n(n-1) 

– example: G1 is a complete graph 
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Adjacent and Incident 

 If (v0, v1) is an edge in an undirected graph, 

– v0 and v1 are adjacent 

– The edge (v0, v1) is incident on vertices v0 and v1 

 If <v0, v1> is an edge in a directed graph 

– v0 is adjacent to v1, and v1 is adjacent from v0 

– The edge <v0, v1> is incident on v0 and v1 
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0 2 

1 

self 

*Figure 6.3:Example of a graph with feedback loops and a 
 

 multigraph (p.260) 
 

0 
 

 

 

 

 

1 3 
 

 

 

 

 

 

2 

edge multigraph: 

(a) (b) multiple occurrences 

of the same edge 
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 A subgraph of G is a graph G’ such that V(G’) 

is a subset of V(G) and E(G’) is a subset of E(G) 

 A path from vertex vp to vertex vq in a graph G, 

is a sequence of vertices, vp, vi1, vi2, ..., vin, vq, 

such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges 

in an undirected graph 

 The length of a path is the number of edges on 

it 



 

0 

1 

0 

1 

2 2 

0 

1 2 

3 

0 0 

1 2 

1 2 

3 

0 

1 2 

3 

 
 

G1 (i) (ii) (iii) (iv) 
(a) Some of the subgraph of G1 

 

0 
 

單一 

1 分開 
 

 

(i) (ii) (iii) (iv) 

(b) Some of the subgraph of G3 

G3 8 

0 0 

1 

2 
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 A simple path is a path in which all vertices, 

except possibly the first and the last, are distinct 

 A cycle is a simple path in which the first and 

the last vertices are the same 

 In an undirected graph G, two vertices, v0 and v1 

are connected if there is a path in G from v0 to v1 

 An undirected graph is connected if, for every 

pair of distinct vertices vi, vj, there is a path 

from vi to vj 
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0 

1 2 

3 

 

 

 

connected 
 

 

 

G1 

2 
 

tree (acyclic graph) 

0 

1 2 

3 4 5 6 

G 
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 A connected component of an undirected graph 

is a maximal connected subgraph. 

 A tree is a graph that is connected and acyclic. 

 A directed graph is strongly connected if there 

is a directed path from vi to vj and also 

from vj to vi. 

 A strongly connected component is a maximal 

subgraph that is strongly connected. 
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0 

2 1 

3 

*Figure 6.5: A graph with two connected components (p.262) 

connected component (maximal connected subgraph) 
 

 

H1 H2 4 
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7 

 
G4 (not connected) 
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*Figure 6.6: Strongly connected components of G3 (p.262) 

strongly connected component 

not strongly connected (maximal strongly connected subgraph) 
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Degree 

 The degree of a vertex is the number of edges 
incident to that vertex 

 For directed graph, 
– the in-degree of a vertex v is the number of edges 

that have v as the head 

– the out-degree of a vertex v is the number of edges 
that have v as the tail 

– if di is the degree of a vertex i in a graph G with n 
vertices and e edges, the number of edges is 

n1 

e  (d
i 
) / 2 

0 
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0 

1 2 

G 3 
3 

1 

undirected graph 

degree 
3 

 

 

 

 

 
 

3 3 

 

 
0 

directed graph 

in-degree 

out-degree 1 

2 

G3 

 
 

1 1 G2 1 1 

in:1, out: 1 

 
 

in: 1, out: 2 

 

in: 1, out: 0 

0 

1 

3 

2 
2 

3 

3 4 5 6 
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structure Graph is 

ADT for Graph 

objects: a nonempty set of vertices and a set of undirected edges, where each 
edge is a pair of vertices 

functions: for all graph  Graph, v, v1 and v2  Vertices 

Graph Create()::=return an empty graph 

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no 
incident edge. 

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge 
between v1 and v2 

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges 
incident to it are removed 

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) 
is removed 

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE 

else return FALSE 

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v 
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Graph Representations 

 Adjacency Matrix 

 Adjacency Lists 
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Adjacency Matrix 
 

 

 

 Let G=(V,E) be a graph with n vertices. 

 The adjacency matrix of G is a two-dimensional 

n by n array, say adj_mat 

 If the edge (vi, vj) is in E(G), adj_mat[i][j]=1 

 If there is no such edge in E(G), adj_mat[i][j]=0 

 The adjacency matrix for an undirected graph is 

symmetric; the adjacency matrix for a digraph 

need not be symmetric 
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0 

2 1 

3 

4 

5 

6 

7 
1 1 

0 

1 

1 0 

0 

0 

0 

1 

0 

1 




Examples for Adjacency Matrix 
0 

 

 

1 2 

3 
0 1 1 1 

 
1 

1 1 0 1 
 
1 1 





0 


0 

 

 

1 0


0  0 0
0 0  

 
G 1 0

G1 
2 

 
 
0 0
 

0 0
symmetric  

 

undirected: n2/2 

directed: n2 

0 0

0 

1 

2 
1 

1 1 0 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

1 1 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 1 

0 0 0 0 1 0 

0 0 0 0 0 1 
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

Merits of Adjacency Matrix 

 From the adjacency matrix, to determine the 

connection of vertices is easy 
n1 

 The degree of a vertex is adj_ mat[i][ j] 
j 0 

 For a digraph, the row sum is the out_degree, 

while the column sum is the in_degree 
 

ind (vi) 
n1 


j0 

A[ j,i] outd (vi) 
n1 


j0 

A[i, j] 
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Data Structures for Adjacency Lists 
 

 

Each row in adjacency matrix is represented as an adjacency list. 
 

 
 

#define MAX_VERTICES 50 

typedef struct node *node_pointer; 

typedef struct node { 

int vertex;  

struct node *link; 

}; 

node_pointer graph[MAX_VERTICES]; 

int n=0; /* vertices currently in use * 



 

1 2 3 

0 2 3 

0 1 3 

0 1 2 
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0 0 
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G1 0 4 
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0 6 

1 1 
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2 

G3 
2 

G4 

An undirected graph with n vertices and e edges ==> nCHAhPeTEaRd6  nodes and 2e list nod2e2 s 
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0 3 
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6 

7 
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 degree of a vertex in an undirected graph 

–# of nodes in adjacency list 

 # of edges in a graph 

–determined in O(n+e) 

 out-degree of a vertex in a directed graph 

–# of nodes in its adjacency list 

 in-degree of a vertex in a directed graph 

–traverse the whole data structure 
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node[n]: n+2e+1 

 
 

 

 

node[0] … node[n-1]: starting point for vertices 

node[n+1] … node[n+2e]: head node of edge 

 

 

[0] 9 [8] 23 [16] 2 

[1] 11 0 [9] 1 4 [17] 5 

[2] 13  [10] 2 5 [18] 4 

[3] 15 1 [11] 0 [19] 6 

[4] 17  [12] 3 6 [20] 5 

[5] 18 2 [13] 0 [21] 7 

[6] 20  [14] 3 7 [22] 6 

[7] 22 3 [15] 1  

0 

2 1 

3 

4 

5 

6 

7 
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0 

 
1 

 
2 

 

 

 

 

 

 

Determine in-degree of a vertex in a fast way. 







0 

1 

2 

NULL 1 

NULL 0 

NULL 1 
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tail head column link for head row link for tail 
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0 1 


 0 

0 0 

0



0

0 

0 1 2 

1 

0 

1 

2 

1 

0 1 NULL NULL 

 

1 0 NULL 
 

 

1 2 NULL NULL 

 

2   
NULL 
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


Order is of no significance. 

headnodes vertax link 

0 
 

 

1 
 

 

2 

 
3 

0 

1 2 

3 







 NULL 0 1 2 

NULL 1 0 3 

NULL 3 0 2 

NULL 2 1 3 



29 
 

Some Graph Operations 

 Traversal 

Given G=(V,E) and vertex v, find all wV, 

such that w connects v. 

– Depth First Search (DFS) 

preorder tree traversal 

– Breadth First Search (BFS) 

level order tree traversal 

 Connected Components 

 Spanning Trees 
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*Figure 6.19:Graph G and its adjacency lists (p.274) 

depth first search: v0, v1, v3, v7, v4, v5, v2, v6 

 

 

 

 

 

 

 

 

 

 

 

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7 
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Data structure 

adjacency list: O(e) 

adjacency matrix: O(n2) 

#define FALSE 0 
#define TRUE 1 
short int visited[MAX_VERTICES]; 

Depth First Search 

 
void dfs(int v) 

{ 

node_pointer w; 

visited[v]= TRUE; 

printf(“%5d”, v); 

for (w=graph[v]; w; w=w->link) 

if (!visited[w->vertex]) 

dfs(w->vertex); 

} 
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Breadth First Search 
 

 

 
 

typedef struct queue *queue_pointer; 

typedef struct queue { 

int vertex;   
 

queue_pointer link; 

}; 

void addq(queue_pointer *, 

queue_pointer *, int); 

int deleteq(queue_pointer *); 
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adjacency list: O(e) 

adjacency matrix: O(n2) 

 

Breadth First Search (Continued) 

void bfs(int v) 

{ 

node_pointer w; 

queue_pointer front, rear; 

front = rear = NULL; 

printf(“%5d”, v); 

visited[v] = TRUE; 

addq(&front, &rear, v); 
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while (front) { 

v= deleteq(&front); 

for (w=graph[v]; w; w=w->link) 

if (!visited[w->vertex]) { 

printf(“%5d”, w->vertex); 

addq(&front, &rear, w->vertex); 

visited[w->vertex] = TRUE; 

} 

} 

} 
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} 

adjacency list: O(n+e) 

adjacency matrix: O(n2) 

 

Connected Components 

void connected(void) 

{ 

for (i=0; i<n; i++) { 

if (!visited[i]) { 

dfs(i); 

printf(“\n”); 

} 

} 



 

 

Topics 

�  Sequential Search on an Unordered File 

�  Sequential Search on an Ordered File 

�  Binary Search 

�  Bubble Sort 

�  Insertion Sort 



 

 

 

 

�  There are some very common problems that 
we use computers to solve: 
◦ Searching through a lot of records for a specific 

record or set of records 

◦ Placing records in order, which we call sorting 

�  There are numerous algorithms to perform 
searches and sorts. We will briefly explore 
a few common ones. 



 

◦ Sequential (linear) search 

◦ Binary search 

 

 

�  A question you should always ask when 
selecting a search algorithm is “How fast does 
the search have to be?” The reason is that, in 
general, the faster the algorithm is, the more 
complex it is. 

�  Bottom line: you don’t always need to use or 
should use the fastest algorithm. 

�  Let’s explore the following search algorithms, 
keeping speed in mind. 



 

 

 

�  Basic algorithm: 

Get the search criterion (key) 

Get the first record from the file 
While ( (record != key) and (still more records) ) 

Get the next record 

End_while 

 

�  When do we know that there wasn’t a record in 
the file that matched the key? 



 

in the file that matched the 

 
 

�  Basic algorithm: 

Get the search criterion (key) 

Get the first record from the file 
While ( (record < key) and (still more records) ) 

Get the next record 

End_while 

If ( record = key ) 

Then success 

Else there is no match in the file 

End_else 

�  When do we know that there wasn’t a record 

key? 



 

 

�  Let’s do a comparison. 

�  If the order was ascending alphabetical on 
customer’s last names, how would the search 
for John Adams on the ordered list compare 
with the search on the unordered list? 

◦ Unordered list 

🞄 if John Adams was in the list? 

🞄 if John Adams was not in the list? 

◦ Ordered list 

🞄 if John Adams was in the list? 

🞄 if John Adams was not in the list? 



 

 

 

�  How about George Washington? 
◦ Unordered 

🞄 if George Washington was in the list? 

🞄 If George Washington was not in the list? 

◦ Ordered 

🞄 if George Washington was in the list? 

🞄 If George Washington was not in the list? 

�  How about James Madison? 



 

 

 

�  Observation: the search is faster on an ordered 
list only when the item being searched for is not 
in the list. 

�  Also, keep in mind that the list has to first be 
placed in order for the ordered search. 

�  Conclusion: the efficiency of these algorithms 

is roughly the same. 

�  So, if we need a faster search, we need a 
completely different algorithm. 

�  How else could we search an ordered file? 



 

 

�  If we have an ordered list and we know how 
many things are in the list (i.e., number of 
records in a file), we can use a different 
strategy. 

�  The binary search gets its name because the 

algorithm continually divides the list into two 
parts. 



 

 

 

           

 

Always look at the center 
value. Each time you get 
to discard half of the 
remaining list. 

Is this fast ? 

     

 



 

 

�  Worst case: 11 items in the list took 4 tries 

�  How about the worst case for a list with 32 
items ? 
◦ 1st try - list has 16 items 

◦ 2nd try - list has 8 items 

◦ 3rd try - list has 4 items 

◦ 4th try - list has 2 items 

◦ 5th try - list has 1 item 



 

 

 

List has 250 items 

1st try - 125 
items 

2nd try - 63 items 

3rd try - 32 items 

4th try - 16 items 

5th try - 8 items 

6th try - 4 items 

7th try - 2 items 

8th try - 1 item 

List has 512 items 

1st try - 256 
items 

2nd try - 128 
items 

3rd try - 64 items 

4th try - 32 items 

5th try - 16 items 

6th try - 8 items 

7th try - 4 items 

8th try - 2 items 
9th try - 1 item 



 

 
 

�  List of 11 took 4 tries 

�  List of 32 took 5 tries 

�  List of 250 took 8 tries 

�  List of 512 took 9 tries 

�  32 = 25 and 512 = 29 

�  8 < 11 < 16 23 < 11 < 24 

�  128 < 250 < 256 27 < 250 < 28 



 

 

�  How long (worst case) will it take to find an 
item in a list 30,000 items long? 

210 = 1024 213 = 8192 

211 = 2048 214 = 16384 

212 = 4096 215 = 32768 

�  So, it will take only 15 tries! 



 

 

�  We say that the binary search algorithm runs in 
log2 n time. (Also written as lg n) 

�  Lg n means the log to the base 2 of some value 
of n. 

�  8 = 23 lg 8 = 3 16 = 24 lg 16 = 4 

�  There are no algorithms that run faster than lg 
n time. 



 

 

 

�  So, the binary search is a very fast search 
algorithm. 

�  But, the list has to be sorted before we can 
search it with binary search. 

�  To be really efficient, we also need a fast sort 
algorithm. 



 

 

 

Bubble Sort Heap Sort 

Selection Sort Merge Sort 

Insertion Sort Quick Sort 

�  There are many known sorting algorithms. 
Bubble sort is the slowest, running in n2 time. 
Quick sort is the fastest, running in n lg n 

time. 

�  As with searching, the faster the sorting 
algorithm, the more complex it tends to be. 

�  We will examine two sorting algorithms: 

◦ Bubble sort 

◦ Insertion sort 



 

 
 

void bubbleSort (int a[ ] , int size) 

{ 

int i, j, temp; 

for ( i = 0; i < size; i++ ) /* controls passes through the list */ 

{ 

for ( j = 0; j < size - 1; j++ ) /* performs adjacent comparisons 

*/ 

{ 

if ( a[ j ] > a[ j+1 ] ) /* determines if a swap should 

occur */ 

{ 

 
 

} 

} 

 

temp = a[ j ]; /* swap is performed */ 

a[ j ] = a[ j + 1 ]; 

a[ j+1 ] = temp; 

} 



 

} 



 

 
 

�  Insertion sort is slower than quick sort, but 
not as slow as bubble sort, and it is easy to 
understand. 

�  Insertion sort works the same way as 
arranging your hand when playing cards. 
◦ Out of the pile of unsorted cards that were dealt to 

you, you pick up a card and place it in your hand in 
the correct position relative to the cards you’re 
already holding. 



 

 

 

 

 

 

  

 
 

  

 

7 5 
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5 7 

5 6 7 

5 6 7 K 

 

 

 

 
 

 

 

K 8 7 6 5 



 

K 

 

Unsorted - shaded 

Look at 2nd item - 5. 

Compare 5 to 7. 

5 is smaller, so move 5 

to temp, leaving 

an empty slot in 

position 2. 

Move 7 into the empty 

slot, leaving position 1 

open. 

 

Move 5 into the open 

position. 

7 

7 

2 
> 

< 
3 7 5 

5 
1 

v 

5 

7 

7 



 

K 

 
 

Look at next item - 6. 

Compare to 1st - 5. 

6 is larger, so leave 5. 
Compare to next - 7. 
6 is smaller, so move 
6 to temp, leaving an 
empty slot. 

Move 7 into the 

slot, leaving position 

open. 

Move 6 to the open 

2nd position. 

7 

emp 

22 > 
7 

< 
3 7 6 5 

5 

5 

v 

6  
ty 

1 
7 5 

6 7 5 



 

7 6 

 
 

 

King. 
5 

  

 

it is. 

Look at next item - 

Compare to 1st - 5. 

King is larger, so 

leave 5 where 

Compare to next - 

6. King is larger, so 
leave 6 

where it is.  

Compare to next - 7. 

King is larger, so 

leave 7 where it is. 

K 



 

5 6 7 K 8 
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�  In CS, a hash table, or a hash map, is a data 

structure that associates keys (names) with 
values (attributes). 

◦ Look-Up Table 

◦ Dictionary 

◦ Cache 

◦ Extended Array 



 

 

 



 

 

 

 

 

 

 

 

A small phone book as a hash table. 
(Figure is from Wikipedia) 



 

 

 

 

 

 

�  Collection of pairs. 
◦ (key, value) 

◦ Each pair has a unique key. 

�  Operations. 
◦ Get(theKey) 

◦ Delete(theKey) 

◦ Insert(theKey, theValue) 



 

 

 

 

 

 

�  Hash table : 
◦ Collection of pairs, 

◦ Lookup function (Hash function) 

�  Hash tables are often used to implement 
associative arrays, 
◦ Worst-case time for Get, Insert, and Delete is 

O(size). 

◦ Expected time is O(1). 



 

 

 

�  Search tree methods: key comparisons 

◦ Time complexity: O(size) or O(log n) 

�  Hashing methods: hash functions 

◦ Expected time: O(1) 

�  Types 

◦ Static hashing (section 8.2) 

◦ Dynamic hashing (section 8.3) 



 

 

 

�  Key-value pairs are stored in a fixed size 
table called a hash table. 

◦ A hash table is partitioned into many buckets. 

◦ Each bucket has many slots. 

◦ Each slot holds one record. 

◦ A hash function f(x) transforms the identifier (key) 

into an address in the hash table 
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#define MAX_CHAR 10 

#define TABLE_SIZE 13 

typedef struct { 
char key[MAX_CHAR]; 

/* other fields */ 

} element; 

element hash_table[TABLE_SIZE]; 



 

 

 

�  Open addressing ensures that all elements 

are stored directly into the hash table, thus 
it attempts to resolve collisions using 
various methods. 

 

�  Linear Probing resolves collisions by placing 

the data into the next open slot in the table. 



 

 

 

 

 

 

�  divisor = b (number of buckets) = 17. 

�  Home bucket = key % 17. 

0 4 8 12 16 
 

34 0 45    6 23 7   28 12 29 11 30 33 

 

• Insert pairs whose keys are 6, 12, 34, 29, 28, 11, 
23, 7, 0, 33, 30, 45 
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34 0 45    6 23 7   28 12 29 11 30 33 

�  Delete(0) 
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• Search cluster for pair (if any) to fill vacated bucket. 
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�  Search cluster for pair (if any) to fill vacated 
bucket. 
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�  Search cluster for pair (if any) to fill vacated 
bucket. 

 

0    4    8    12    16 
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34 0  6 23 7   28 12 11 30 45 33 



 

 

 

 

 

 

void linear_insert(element item, element ht[]){ 

int i, hash_value; 
i = hash_value = hash(item.key); 

while(strlen(ht[i].key)) { 
if (!strcmp(ht[i].key, item.key)) { 

fprintf(stderr, “Duplicate entry\n”); exit(1); 

} 

i = (i+1)%TABLE_SIZE; 

if (i == hash_value) { 
fprintf(stderr, “The table is full\n”); exit(1); 

} } 

ht[i] = item; 

} 



 

 

 
 
 
 
 

�  Identifiers tend to cluster together 

�  Adjacent cluster tend to coalesce 

�  Increase the search time 



 

 

 

 

 

Example: 
M (# of pages)=4, 

P (page capacity)=2 

 
Allocation: lower order 

two bits 

 

 

 
Figure 8.8:Some identifiers requiring 3 bits per character(p.414) 

Identifiers Binary representaiton 

a0 100 000 

a1 100 001 

b0 101 000 

b1 101 001 

c0 110 000 

c1 110 001 

c2 110 010 

c3 110 011 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 8.9: A trie to hole 

identifiers (p.415) 
 

 

 

 

Read it in reverse 
order. 

c5: 110 101 

c1: 110 001 



 

Files, ACM Transactions 

4(3):315-344, 1979. 

 
 

 

�  We need to consider some issues! 
◦ Skewed Tree, 

◦ Access time increased. 

�  Fagin et. al. proposed extendible hashing to 
solve above problems. 
◦ Ronald Fagin, Jürg Nievergelt, Nicholas 

Pippenger, and H. Raymond Strong, Extendible 
Hashing - A Fast Access Method for Dynamic 

on Database Systems, 



 

 

 

 

�  A directories is a table of pointer of pages. 

�  The directory has k bits to index 2^k entries. 

�  We could use a hash function to get the 
address of entry of directory, and find the 
page contents at the page. 



 

 

 

 

 

 

 

 

 

 

 
 

The directory of 
the three tries of 

Figure 8.9 



 

 
 

 
 

 
 

It is obvious that the directories will grow 
very large if the hash function is clustering. 

Therefore, we need to adopt the uniform 
hash function to translate the bits 

sequence of keys to the random bits 
sequence. 

Moreover, we need a family of uniform 
hash functions, since the directory will 

grow. 



 

 https://nptel.ac.in/courses/106102064/  
 https://www.javatpoint.com/data-structure-tutorial 

 https://www.youtube.com/watch?v=Db9ZYbJONHc  

 https://www.youtube.com/watch?v=DFpWCl_49i0  

 https://www.youtube.com/watch?v=3hyxc4juJRg 

 https://nptel.ac.in/courses/106/102/106102064/ 
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