

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE -560109 DEPARTMENT OF SCIENCE AND HUMANITIES

I SESSIONAL TEST QUESTION PAPER 2018 – 19 ODD SEMESTER

SET-B	USN	

Degree

Semester

Branch Course Title : CSE / CV/EEE : Engineering Physics

Date Course Code :

18-9-2019 18PHY12

Duration

: 90 Minutes

Max Marks

30

<u>Constants:</u> Charge of an electron $e = 1.6 \times 10^{19} \text{C}$, Planck's constant $h = 6.625 \times 10^{-34} \text{Js}$, velocity of light $c = 3 \times 10^8 \text{m/s}$, mass of an electron $m = 9.1 \times 10^{-31} kg$

Note: Answer ONE full question from each part

Q.	Question	Marks	K Level	CO mapping	
PART-A					
1(a)	Define simple harmonic motion. Derive the equation of motion for SHM.	5	Applying K3	CO1	
(b)	A free particle is executing simple harmonic motion in a straight line. The maximum velocity it attains during any oscillation is 62.8 m/s. Calculate the frequency of oscillation, if its amplitude is 0.5 m.	5	Applying K3	CO1	
(c)	Obtain one-dimensional time-independent Schrödinger wave equation.	5	Applying K3	CO2	
	OR				
2(a)	Define spring constant. Derive the expressions for equivalent force constant for two springs in parallel combination.	5	Applying K3	CO1	
(b)	A vibration system of natural frequency 500 cycles/second is forced to vibrate with a periodic force/unit mass of amplitude 100x10 ⁻⁵ N/kg in the presence of a damping/unit mass of 0.01×10 ⁻³ rad/s. Calculate the	5	Applying K3	COI	
(c)	Solve the Schrödinger's wave equation for the allowed energy values in	5	Applying K3	CO2	
(c)	the case of a particle in a box. PART-B				
3(a)	Obtain the theory of damped oscillations.	5	Applying K3	CO1	
	Describe the construction & working of Reddy shock tube with the help	5	Understand K2	CO1	
(b)	of a diagram. Show that an electron cannot exist within the nucleus of an atom.	5	Applying K3	CO2	
(c)	OR				
1(0)	Obtain an expression for amplitude of vibration of a body undergoing	5	Applying K3	CO1	
4(a)	forced oscillations.	5	Understand	COI	
(b)	Explain the basic of conservation of mass, momentum and energy.		K2		
(c)	In a measurement of position and velocity of an electron moving with a speed of 6×10^5 m/s, calculate the highest accuracy with which its position could be determined if the inherent error in the measurement of	5	Applying K3	CO2	
	its velocity is 0.01% for the speed stated.	-	-4		

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF SCIENCE AND HUMANITIES II SESSIONAL TEST QUESTION PAPER 2019 – 2020 ODD SEMESTER

SET-A

USN					
-----	--	--	--	--	--

Degree

B.E

Branch

CSE/C, V/EEE

Course Title

: Engineering Physics

Duration

90 Minutes

Semester :

Date

24-10-2019

Course Code : Max Marks :

: 18PHY12

<u>Constants:</u> charge on an electron $e=1.6\times10^{-19}$ C, Planck's constant, $h=6.625\times10^{-34}$ Js, velocity of light $c=3\times10^8$ m/s, mass of an electron, $m=9.1\times10^{-31}$ kg, Boltzmann constant $k=1.38\times10^{-23}$ J/K

Q.	Note: Answer ONE full question from each par Questions	Marks		CO
No.	Questions		K Level	mapping
	PART-A			
1(a)	Derive the expression for energy density of radiation in terms of Einstein's coefficients.	5	Applying K3	CO2
(b)	Explain the assumptions made in quantum free electron theory?	5	Understand K2	CO3
(c)	Derive the expression for Fermi energy in terms of energy gap of an intrinsic semiconductor.	5	Applying K3	CO3
	OR			
2(a)	A medium in thermal equilibrium at temperature $300K$ has two energy levels with a wavelength separation of $1\mu m$. Find the ratio of population densities of the upper and lower levels.	5	Applying K3	CO2
(b)	Explain the variation of Fermi factor with temperature and energy.	5	Understand K2	CO3
(c)	Derive an expression for Fermi energy at Zero Kelvin.	5	Applying K3	CO3
	PART-B			
(a)	Explain the construction and working of CO ₂ laser with the help of energy level diagram.	5	Understand K2	CO2
(b)	Explain density of states and fermi factor with equation.	5	Understand K2	CO3
(c)	Calculate the probability of an electron occupying an energy level $0.02eV$ above the fermi level at $400K$ in a material.	5	Applying K3	CO3
	OR			
4(a)	Explain with energy band diagram the construction and working of semiconductor diode laser.	5	Understand K2	CO2
(b)	Explain any 2 major success of quantum free electron theory.	5	Understand K2	CO3
(c)	Derive an expression for electrical conductivity of a semiconductor.	5	Applying K3	CO3

Course In charge

122/10/2019 Head - Dept r. Roma 2

Principal

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE-560109 DEPARTMENT OF SCIENCE AND HUMANITIES

III SESSIONAL TEST QUESTION PAPER 2018 - 19 ODD SEMESTER

BBIOTAL TEST QUESTION	
SET-A	USN

Degree

Semester

Branch

: B.E : CSE/CV/EEE : Engineering Physics

Date

9-12-2019

Course Title

Course Code : 18PHY12

Duration

: 90 Minutes

Max Marks

<u>Constants:</u> Charge of an electron $e = 1.6 \times 10^{-19} C$, Planck's constant $h = 6.625 \times 10^{-14} Js$, velocity of light $c = 3 \times 10^{8} m/s$, mass of an electron $m = 9.1 \times 10^{-31} kg$

Note: Answer ONE full question from each part

Q.	Question	Marks	K Level	CO mapping		
No. PART-A						
1(a)	Explain Young's modulus and Bulk modulus of elasticity.	5	Understand K2	CO4		
(b)	Derive the relation between K, Y and σ .	5	Applying K3	CO4		
(c)	Obtain an expression for the numerical aperture.	5	Applying K3	CO5		
	OR					
2(a)	State and explain Hooke's law with the help of stress-strain diagram.	5	Understand K2	CO4		
(b)	Derive the expression for bending moment in terms of moment of inertia.	5	Applying K3	CO4		
(c)	Calculate the V-number for a fiber of core diameter 40µm and with refractive indices of 1.55 and 1.50 respectively for core and cladding when the wavelength of the propagating wave is 1400nm. Also calculate the number of modes that the fiber can support for propagation. Assume that the fiber is in air.	5	Applying K3	CO5		
	PART-B					
3(a)	Derive the relation between K, η and Y.	5	Applying K3	CO4		
(b)	Calculate the torque required to twist a wire of length 1.5m, radius 0.0425×10^{-2} m, through an angle ($\pi/45$) radian, if the value of rigidity modulus of its material is 8.3×10^{10} N/m ² .	5	Applying K3	CO4		
(c)	Discuss the point to point communication using an optical fiber with the help of a block diagram.	5	Understand K2	CO5		
	OR					
4(a)	Derive an expression for couple per unit twist of a solid cylinder.	5	Applying K3	CO4		
(b)	Calculate the extension produced in a wire of length 2m and radius 0.013x10 ⁻² m due to a force of 14.7N applied along its length. Given, Y=2.1x10 ¹¹ N/m ²	5	Applying K3	CO4		
(c)	Explain the different types of optical fibers with suitable diagrams.	5	Understand K2	CO5		

