K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE -560109 DEPARTMENT OF SCIENCE AND HUMANITIES ### I SESSIONAL TEST QUESTION PAPER 2018 – 19 ODD SEMESTER | SET-B | USN | | | - | |-------|-----|--|--|---| | | | | | _ | Degree Semester Branch : CSE / CV/EEE : Engineering Physics : 18-9-2019 Course Title Course Code : 18PHY12 Duration : 90 Minutes Max Marks <u>Constants:</u> Charge of an electron $e = 1.6 \times 10^{-19} \text{C}$, Planck's constant $h = 6.625 \times 10^{-34} \text{Js}$, velocity of light $c = 3 \times 10^8 \text{m/s}$, mass of an electron $m = 9.1 \times 10^{-31} kg$ Note: Answer ONE full question from each part | Q.
No. | Question | Marks | K Level | CO
mapping | |-----------|--|-------|------------------|---------------| | | PART-A | | | | | 1(a) | Define simple harmonic motion. Derive the equation of motion for SHM. | 5 | Applying
K3 | CO1 | | (b) | A free particle is executing simple harmonic motion in a straight line. The maximum velocity it attains during any oscillation is 62.8 m/s. Calculate the frequency of oscillation, if its amplitude is 0.5 m. | 5 | Applying
K3 | CO1 | | (c) | Obtain one-dimensional time-independent Schrödinger wave equation. | 5 | Applying
K3 | CO2 | | | OR | | | | | 2(a) | Define spring constant. Derive the expressions for equivalent force constant for two springs in parallel combination. | 5 | Applying
K3 | CO1 | | (b) | A vibration system of natural frequency 500 cycles/second is forced to vibrate with a periodic force/unit mass of amplitude 100×10^{-5} N/kg in the presence of a damping/unit mass of 0.01×10^{-3} rad/s. Calculate the maximum amplitude of vibration of the system. | 5 | Applying
K3 | CO1 | | (c) | Solve the Schrödinger's wave equation for the allowed energy values in the case of a particle in a box. | 5 | Applying
K3 | CO2 | | | PART-B | | | | | 3(a) | Obtain the theory of damped oscillations. | 5 | Applying
K3 | CO1 | | (b) | Describe the construction & working of Reddy shock tube with the help of a diagram. | 5 | Understand
K2 | CO1 | | (c) | Show that an electron cannot exist within the nucleus of an atom. | 5 | Applying
K3 | CO2 | | - | OR | | | | | 4(a) | Obtain an expression for amplitude of vibration of a body undergoing forced oscillations. | 5 | Applying
K3 | CO1 | | (b) | Explain the basic of conservation of mass, momentum and energy. | 5 | Understand
K2 | CO1 | | (c) | In a measurement of position and velocity of an electron moving with a speed of 6×10^5 m/s, calculate the highest accuracy with which its position could be determined if the inherent error in the measurement of its velocity is 0.01% for the speed stated. | _ | Applying
K3 | CO2 | Principal ### K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE -560109 DEPARTMENT OF SCIENCE AND HUMANITIES ### I SESSIONAL SCHEME AND SOLUTION 2018 - 19 ODD SEMESTER | C | T | 7 | n | | |---|---|-----|---|--| | • | | 1 - | к | | | | | | | | | USN | | П | | |---------------|--|-----|-----| | 2003/00/03/04 | | 1 1 | 1 1 | Degree : B.E Semester Branch : Science and Humanities Date 18-9-2019 Course Title : Engineering Physics Course Code : 18PHY12 Duration : 90 Minutes Max Marks <u>Constants:</u> Charge of an electron $e = 1.6 \times 10^{-19}$ C, Planck's constant $h = 6.625 \times 10^{-34}$ Js, velocity of light $c = 3 \times 10^8$ m/s, mass of an electron $m = 9.1 \times 10^{-31} kg$ | Q.
Vo. | Question | Marks | K Level | CO
mapping | |-----------|---|-------|----------------|---------------| | | PART-A | | | | | 1(a) | Define simple harmonic motion. Derive the equation of motion for SHM. | 5 | Applying
K3 | CO1 | | | Definition of SHM | 1 | | | | | Starting from Hooke's law $F = -ky$ | 1 | | | | Sol | Using Newton's Second Law $F = ma$ | 1 | | | | | Arrive at $\frac{d^2y}{dt^2} + \omega^2 y = 0$ | 2 | | | | (b) | A free particle is executing simple harmonic motion in a straight line. The maximum velocity it attains during any oscillation is 62.8 m/s. Calculate the frequency of oscillation, if its amplitude is 0.5 m. | 5 | Applying
K3 | CO1 | | | Formula: | | | | | | $v_{\text{max}} = \omega A$ | 1 | | 3 | | Sol | $\therefore \omega = 125.6 \text{ rad/s}$ | 1 | | | | | $\omega = 2\pi f$ | 1 | | | | | $\therefore f = 20 \text{ Hz}$ | 2 | | | | (c) | Obtain one-dimensional time-independent Schrödinger wave equation. | 5 | Applying K3 | CO2 | | | Starting from $\psi = Ae^{i(kx-\omega t)}$ | | | | | | upto $\frac{d^2\psi}{dt^2} = Ae^{i(kx-\omega t)}(-\omega^2) = -\omega^2\psi$ | 1 | | | | | using | | | | | | $\lambda = \frac{h}{mv}$ | 1 | | | | | and | | | | | | $\frac{d^2\psi}{dx^2} = \frac{1}{v^2} \frac{d^2\psi}{dt^2}$ | 1 | | | | | Arrive upto | | | | | | $\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$ | 2 | | | | | OR | | | | | 2(a) | Define spring constant. Derive the expressions for equivalent force constant for two springs in parallel combination. | 5 | Applying
K3 | CO1 | |-------------------------|--|-----|------------------|--| | THE REAL PROPERTY. | Definition of spring constant | 1 | | Control of the Contro | | | Diagram: | 1 | | | | Sol | Starting from $F_p = -k_p x$, | 1 | | | | .501 | Using $F_p = F_1 + F_2$ | 1 | | | | | Arrive at $k_p = k_1 + k_2$ | 1 | | | | (b) | A vibration system of natural frequency 500 cycles/second is forced to vibrate with a periodic force/unit mass of amplitude 100x10 ⁻⁵ N/kg in the presence of a damping/unit mass of 0.01×10 ⁻³ rad/s. Calculate the maximum amplitude of vibration of the system. | 5 | Applying
K3 | CO1 | | Adversaries | Formula: | | | and the second second second second | | | b = r/2m | 1 | | | | | $\therefore b = 0.005 \times 10^{-3}$ | 1 | | | | . | | | | | | Sol | $A_{max} = \frac{\frac{F}{m}}{2bp}$ | 1 | | | | | $A_{max} = \frac{2bp}{2}$ | | | | | | But $\omega = 2\pi f$ | 2 | | | | Alexander of the second | $A_{max} = 0.0318 \text{m}$ | | | | | (c) | Solve the Schrödinger's wave equation for the allowed energy values in | 5 | Applying | CO ₂ | | (-) | the case of a particle in a box. | | K3 | | | | Starting from Schrodinger's wave equation | | | | | | $\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - 0)\psi = 0$ | 1 | | | | | $dx^2 + h^2 \qquad (E - 0)\psi = 0$ | | | | | | Arrive upto $\frac{d^2\psi}{dr^2} + K^2\psi = 0$ | 1 | | | | | Arrive upto $\frac{dx^2}{dx^2} + K^2 \psi = 0$ | | | | | Sol | and $\Psi = A \cos Kx + B \sin Kx$ | 1 | | | | | Again applying boundary conditions, | 2 | | | | | | 2 | | | | | Arrive upto $E = \frac{n^2 h^2}{8ma^2}$ | | | | | | 8ma² | | | | | | PART-B | | | | | 3(a) | Obtain the theory of damped oscillations. | 5 | Applying
K3 | CO1 | | | Starting from | | | | | | Restoring force = $-kx$, resistive force = $-r\frac{dx}{dt}$ | 1 | 19 | | | | | | | | | | and m = -r - kx | 1 | | | | | and $m \frac{d^2 x}{dt^2} = -r \frac{dx}{dt} - kx$ | - | | | | Sol | | 1 | | | | Sol | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$ | | | | | Sol | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$
Using $x = Ae^{\alpha t}$ by differentiating | | | | | Sol | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$
Using $x = Ae^{\alpha t}$ by differentiating | | | | | Sol | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$ | 1 | | | | Sol | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$
Using $x = Ae^{\alpha t}$ by differentiating
Arrive at $x = A_1 e^{(-b+\sqrt{b^2-\omega^2})t} + A_2 e^{(-b-\sqrt{b^2-\omega^2})t}$ | 2 | Understand | 601 | | | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$
Using $x = Ae^{\alpha t}$ by differentiating
Arrive at $x = A_1 e^{(-b+\sqrt{b^2-\omega^2})t} + A_2 e^{(-b-\sqrt{b^2-\omega^2})t}$
Describe the construction & working of Reddy shock tube with the help | 1 | Understand
K2 | CO1 | | | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2x = 0$
Using $x = Ae^{\alpha t}$ by differentiating
Arrive at $x = A_1 e^{(-b+\sqrt{b^2-\omega^2})t} + A_2 e^{(-b-\sqrt{b^2-\omega^2})t}$
Describe the construction & working of Reddy shock tube with the help of a diagram. | 2 | | CO1 | | Sol (b) | Arrive upto $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + \omega^2 x = 0$
Using $x = Ae^{\alpha t}$ by differentiating
Arrive at $x = A_1 e^{(-b+\sqrt{b^2-\omega^2})t} + A_2 e^{(-b-\sqrt{b^2-\omega^2})t}$
Describe the construction & working of Reddy shock tube with the help | 2 5 | | CO1 | | (c) | Show that an electron cannot exist within the nucleus of an atom. | 5 | Applying
K3 | CO2 | |------|--|------------------|------------------|-----| | Sol | Starting from $E = \frac{p^2}{2m}$
Using $\Delta x_{max} = 10^{-14} m$, obtain $\Delta p_{min} = 0.5 \times 10^{-20} kg m/s$
Finally arrive at $E = 85 MeV$
Conclude using the concept of radioactive decay | 1
2
1
1 | | | | | OR | | | | | 4(a) | Obtain an expression for amplitude of vibration of a body undergoing forced oscillations. | 5 | Applying
K3 | CO1 | | Sol | Starting from $Restoring \ force = -kx \ , resistive \ force = -r \frac{dx}{dt},$ $External \ periodic \ force = F \ sinpt$ $and \ m \frac{d^2x}{dt^2} = -r \frac{dx}{dt} - kx + F sinpt$ $Arrive \ upto \ \frac{d^2x}{dt^2} + 2b \frac{dx}{dt} + \omega^2 x = F \sin pt$ $Using \ x = A sin(pt - \theta)$ $Arrive \ at \ A = \frac{F/m}{\sqrt{(\omega^2 - p^2)^2 + 4b^2p^2}}$ | 1 2 | | | | (b) | Explain the basic of conservation of mass, momentum and energy. | 5 | Understand
K2 | CO1 | | Sol | Explanation: Three Conservation laws with statement and equation: Conservation of mass and equation Conservation of momentum and equation Conservation of energy and equation | 1
2
2 | | | | (c) | In a measurement of position and velocity of an electron moving with a speed of 6×10^5 m/s, calculate the highest accuracy with which its position could be determined if the inherent error in the measurement of its velocity is 0.01% for the speed stated. | 5 | Applying
K3 | CO2 | | Sol | $\Delta v = 6 \times 10^5 \text{ x} (0.01/100) = 60 \text{ m/s}$
$\Delta p = \text{m} \ \Delta v = 5.46 \text{ x} \ 10^{-29} \text{ kg m/s}$
$\Delta x \ge \frac{h}{4\pi \cdot \Delta p}$ | 1 1 1 | | | | | $\therefore \Delta x = 9.65 \text{x } 10^{-7} \text{ m}$ | 2 | | | # 18/9/19 Head - Dept 10. Roma of Principal # K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF SCIENCE AND HUMANITIES ### II SESSIONAL TEST QUESTION PAPER 2019 – 2020 ODD SEMESTER #### SET-A | USN | | П | | | | |-----|-----|-----|--|------|--| | | - 1 | 1 1 | |
 | | Degree : B.E Branch : CSE/C.V/EEE Course Title : Engineering Physics Duration : 90 Minutes Semester Date 24-10-2019 Course Code : 18PHY12 Max Marks : 30 Constants: charge on an electron e=1.6×10¹⁹C, Planck's constant, h=6.625×10¹⁴Js, velocity of light c=3×10⁸m/s, mass of an electron, m=9.1×10⁻³¹kg, Boltzmann constant k=1.38×10⁻²⁴ J/K | | Note: Answer ONE full question from each par | t | | | |-----------|--|-------|------------------|---------------| | Q.
No. | Questions | Marks | K Level | CO
mapping | | ٦ | PART-A | | A | | | 1(a) | Derive the expression for energy density of radiation in terms of Einstein's coefficients. | 5 | Applying
K3 | CO2 | | (b) | Explain the assumptions made in quantum free electron theory? | 5 | Understand
K2 | CO3 | | (c) | Derive the expression for Fermi energy in terms of energy gap of an intrinsic semiconductor. | 5 | Applying
K3 | CO3 | | | OR | | | | | 2(a) | A medium in thermal equilibrium at temperature 300K has two energy levels with a wavelength separation of $1\mu m$. Find the ratio of population densities of the upper and lower levels. | 5 | Applying
K3 | CO2 | | (b) | Explain the variation of Fermi factor with temperature and energy. | 5 | Understand
K2 | CO3 | | (c) | Derive an expression for Fermi energy at Zero Kelvin. | 5 | Applying
K3 | CO3 | | ** | PART-B | | | | |)(a) | Explain the construction and working of CO ₂ laser with the help of energy level diagram. | 5 | Understand
K2 | CO2 | | (b) | Explain density of states and fermi factor with equation. | 5 | Understand
K2 | CO3 | | (c) | Calculate the probability of an electron occupying an energy level $0.02eV$ above the fermi level at $400K$ in a material. | 5 | Applying
K3 | CO3 | | | OR | | | | | 4(a) | Explain with energy band diagram the construction and working of semiconductor diode laser. | 5 | Understand
K2 | CO2 | | (b) | Explain any 2 major success of quantum free electron theory. | 5 | Understand
K2 | CO3 | | (c) | Derive an expression for electrical conductivity of a semiconductor. | 5 | Applying
K3 | CO3 | Course In charge Principal ## K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 **DEPARTMENT OF Science and Humanities** # II SESSIONAL TEST SCHEME & SOLUTION 2018 – 19 ODD SEMESTER #### SET-A | USN | | | | | | | | | |-----|--|--|--|--|--|--|--|--| |-----|--|--|--|--|--|--|--|--| Degree B.E Semester Branch : CSE/EEE/CIVIL Date 24-10-2019 Course Title : Engineering Physics Duration : 90 Minutes Course Code: 18PHY12 Max Marks : 30 | Q.
No. | Questions with Scheme & Solution | | K Level | CO
mappi
ng | |-----------|--|------------------|------------------|-------------------| | | PART-A | | | | | 1(a) | Derive the expression for energy density of radiation in terms of Einstein's coefficients. | 5 | Applying
K3 | CO2 | | | Starting from $E_{\nu}N_{1}B_{12} = N_{2}A_{21} + E_{\nu}N_{2}B_{21}$
Using $\frac{N_{1}}{N_{2}} = e^{\frac{h\nu}{kt}}$ | | Applying
K3 | | | | Osing $\frac{1}{N_2} = e^{-kt}$ Obtain $E_{\nu} = \frac{A_{21}}{B_{21} \left[\frac{B_{12}}{B_{21}} e^{\frac{h\nu}{kt}} - 1 \right]}$ | 1
+
1
+ | | | | Sol | Comparing Planck's equation $E_{\nu} = \frac{8\pi h \nu^3}{c^3} \left[\frac{1}{\frac{h\nu}{\mu}} \right]$ | 1
+
1
+ | | CO2 | | | Arrive at $\frac{A_{21}}{B_{21}} = \frac{8\pi h v^3}{c^3}$, $B_{12} = B_{21}$, $E_v = \frac{A}{B\left[e^{\frac{hv}{kt}} - 1\right]}$ | 1 | | | | (b) | Explain the assumptions made in quantum free electron theory? | 5 | Understand
K2 | CO3 | | Sol | 4 Assumptions: Keywords: Quantization, Pauli's exclusion principle, potential, attractive force and repulsive force | 4 + 1 | Understand
K2 | CO3 | | (c) | Derive the expression for Fermi energy in terms of energy gap of an intrinsic semiconductor. | 5 | Applying
K3 | СОЗ | | Sol | Starting from: $N_e = N_h$ $\frac{(E_F - E_g)}{KT}$ | 1 + 1 + | Applying
K3 | CO3 | | | equating $(m_e^*)^{3/2}e = (m_e^*)^{3/2}e^{(-E_F)/KT}$ | 3 | | | | | Arrive at $E_F = \frac{1}{2}E_g$ | | | | |------|--|---------------------|------------------|-----------| | | <u></u> | | | | | | " ' ' ' I will ' was tame and we 200V has two energy levels | Γ | Applying | | | 2(a) | A medium in thermal equilibrium at temperature $300K$ has two energy levels with a wavelength separation of $1\mu m$. Find the ratio of population densities of the upper and lower levels. | | K3 | co | | | Formula: | 1 | Applying
K3 | | | | $\frac{N_2}{N_1} = e^{\frac{-hc}{\lambda KT}}$ | 1
 + | N.S | | | Sol | Substitution N ₁ | 1 | | co | | | | 3+ | | | | , | Answer: $\frac{N_2}{N_1} = 1.365 \times 10^{-21}$ | 1 | | | | (b) | Explain the variation of Fermi factor with temperature and energy. | 5 | Understand
K2 | CO | | | | 1 | Understand | | | | Explanation of 3 cases: Formula | + | K2 | ı | | | $E < E_F, T = 0K$ | 1 | - ~ | ĺ | | Sol | $E > E_F, T = 0K$ | + | | CO | | 301 | $E=E_F, T>0K$ | 1 + | | CO. | | | Representation of graph | 1 | 9- 5 | | | | | + | | ĺ | | (c) | Derive an expression for Fermi energy at Zero Kelvin. | 5 | Applying | CO | | | Starting from | The shape | K3
Applying | | | | N(E)dE = g(E) dEXf(E) | 1 | K3 | _ | | | Using | + | | | | Sol | | 2 | | CO | | | $n = \int_{E=0}^{E_{max}} g(E) dE \times 1$ | + | | | | | Arrive at $E_{F_0} = Bn^2/3$ | 3 | | | | | PART-B | | 30,7 | | | | Explain the construction and working of CO ₂ laser with the help of energy level | _ | TT-do-tond | | | 3(a) | diagram. Diagram: | 5 | Understand
K2 | CO | | | Explanation of: | 1 | Understand
K2 | | | Sol | Construction | 2 | | со | | | Working: Transitions in Energy levels of CO ₂ laser | + | | | | (h) | Explain density of states and fermi factor with equation. | 2 | Understand | | | (b) | | 5 | K2 | co | | | Explanation: Equations | 2. | Understand | | | Sol | | + | K2 | CO | | No. | $g(E)dE = \left[\frac{8\sqrt{2} \pi m^{3/2}}{h^{3}}\right] E^{1/2} dE$ | 2 | | CO | | | | _ | | | | | $f(E) = \frac{1}{e^{\left(\frac{E - E_F}{KT}\right)} + 1}$ | | ı | | |------|---|-----------|------------------|-----| | (c) | Calculate the probability of an electron occupying an energy level 0.02eV above the fermi level at 400K in a material. | 5 | Applying
K3 | CO3 | | Sol | Formula: $f(E) = \frac{1}{e^{\left(\frac{E-E_F}{KT}\right)}+1}$
Substitution $E - E_F = 0.02eV$
Answer: $f(E) = 0.36$ | 1 + 3 + 1 | Applying
K3 | CO3 | | 4(a) | Explain with energy band diagram the construction and working of semiconductor diode laser. | 5 | Understand
K2 | CO2 | | Sol | Diagram: Explanation of: Construction & Working: Explanation of Fermi levels in P-type and N-type semi-conductor diode laser and recombination of electrons and holes resulting in emission of laser radiation. | 1+2+2 | Understand
K2 | CO2 | | (b) | Explain any 2 major success of quantum free electron theory. | 5 | Understand
K2 | CO3 | | Sol | Explanation of dependence of conductivity on temperature and dependence of conductivity on electron concentration | 2+3 | Understand
K2 | CO3 | | (c) | Derive an expression for electrical conductivity of a semiconductor. | 5 | Applying
K3 | CO3 | | Sol | Starting from $I = nevA$ Using $\mu_e = v/E$ and $J = \sigma E$ Arrive at $\sigma = e(N_e \mu_e + N_h \mu_h)$ and further for intrinsic semiconductor $\sigma = n_i \ e(\mu_e + \mu_h)$ | -+-+3 | Applying
K3 | CO3 | Course in charge Head - Dept A 24/10/2019. Principal ### K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE-560109 DEPARTMENT OF SCIENCE AND HUMANITIES #### III SESSIONAL TEST QUESTION PAPER 2018 – 19 ODD SEMESTER | TOTO A | | | | | ı | |--------|-----|--|--|--|---| | ET-A | USN | | | | | Degree : B.E : CSE/CV/EEE : Engineering Physics Semester Branch Course Title Date : 9-12-2019 Course Code : 18PHY12 Duration : 90 Minutes Max Marks <u>Constants:</u> Charge of an electron $e = 1.6 \times 10^{-19} C$, Planck's constant $h = 6.625 \times 10^{-14} Js$, velocity of light $c = 3 \times 10^{8} m/s$, mass of an electron $m = 9.1 \times 10^{-31} kg$ | Q.
No. | Question | Marks | K Level | CO
mapping | |-----------|--|-------|------------------|---------------| | | PART-A | | | | | 1(a) | Explain Young's modulus and Bulk modulus of elasticity. | 5 | Understand
K2 | CO4 | | (b) | Derive the relation between K, Y and σ. | 5 | Applying
K3 | CO4 | | (c) | Obtain an expression for the numerical aperture. | 5 | Applying
K3 | CO5 | | | OR | | | | | 2(a) | State and explain Hooke's law with the help of stress-strain diagram. | 5 | Understand
K2 | CO4 | | (b) | Derive the expression for bending moment in terms of moment of inertia. | 5 | Applying
K3 | CO4 | | (c) | Calculate the V-number for a fiber of core diameter $40\mu m$ and with refractive indices of 1.55 and 1.50 respectively for core and cladding when the wavelength of the propagating wave is 1400nm. Also calculate the number of modes that the fiber can support for propagation. Assume that the fiber is in air. | 5 | Applying
K3 | CO5 | | | PART-B | | | | | 3(a) | Derive the relation between K, η and Y. | 5 | Applying
K3 | CO4 | | (b) | Calculate the torque required to twist a wire of length 1.5m, radius 0.0425×10^{-2} m, through an angle ($\pi/45$) radian, if the value of rigidity modulus of its material is 8.3×10^{10} N/m ² . | 5 | Applying
K3 | CO4 | | (c) | Discuss the point to point communication using an optical fiber with the help of a block diagram. | 5 | Understand
K2 | CO5 | | 1 | OR | | | | | 4(a) | Derive an expression for couple per unit twist of a solid cylinder. | 5 | Applying
K3 | CO4 | | (b) | Calculate the extension produced in a wire of length 2m and radius 0.013x10 ⁻² m due to a force of 14.7N applied along its length. Given, Y=2.1x10 ¹¹ N/m ² | 5 | Applying
K3 | CO4 | | (c) | Explain the different types of optical fibers with suitable diagrams. | 5 | Understand
K2 | CO5 | # K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE-560109 DEPARTMENT OF SCIENCE AND HUMANITIES # III SESSIONAL TEST SCHEME & SOLUTION 2018 - 19 ODD SEMESTER | SET-A USN USN | | | \top | |---------------|-------|-----|--------| | | SET-A | USN | | Degree : **B.E** Semester I **Branch** : Science and Humanities : 9-12-2019 Course Title : Engineering Physics Course Code: 18PHY12 Duration : 90 Minutes Max Marks : 30 <u>Constants:</u> Charge of an electron $e = 1.6 \times 10^{19} C$, Planck's constant $h = 6.625 \times 10^{-34} Js$, velocity of light $c = 3 \times 10^8 m/s$, mass of an electron $m = 9.1 \times 10^{-31} kg$ | Q.
No. | Question | Marks | K Level | CO
mapping | |-----------|---|------------------|------------------|---------------| | 140. | PART-A | | | 4 | | 1(a) | Explain Young's modulus and Bulk modulus of elasticity. | 5 | Understand
K2 | CO4 | | Sol | Diagram Definition of Young's modulus Expression for Young's modulus Definition of Bulk modulus Expression for Bulk modulus | 1
1
1
1 | Angleina | | | (b) | Derive the relation between K , Y and σ . | 5 | Applying
K3 | CO4 | | | Diagram | 1 | 71 1 | | | Sol | Starting from Final length along X-direction = $1 + \alpha T_x - \beta T_y - \beta T_z$
Using $T_x = T_y = T_z = T$
Arrive upto Volume strain = $\frac{3T(\alpha - 2\beta)}{1}$ | 1 | | | | | Using Bulk modulus, $K = \frac{\text{volume stress}}{\text{volume strain}}$ Arrive at $K = \frac{Y}{3(1-2\sigma)}$ | 1 | | | | (c) | Obtain an expression for the numerical aperture. | 5 | Applying
K3 | CO5 | | Sol | Diagram Starting from Snell's law $n_0 \sin \theta_0 = n_1 \sin \theta_1$ Arrive upto $\cos \theta_1 = \frac{n_2}{n_1}$ Rewriting and substituting for $\cos \theta_1$, arrive upto N.A. $= \sqrt{n_1^2 - n_2^2}$ | 2 | | 3.0 | | | arrive upto N.A. – $\sqrt{n_1 - n_2}$ | | | | | 2(a) | State and explain Hooke's law with the help of stress-strain diagram. | 5 | Understand
K2 | CO4 | |------|---|---|------------------|------| | | Diagram | 1 | | | | | Statement of Hooke's law | 1 | | | | | Explanation | 3 | | | | (h) | Derive the expression for bending moment in terms of moment of inertia. | 5 | Applying
K3 | CO4 | | | Diagram | 1 | | | | 1 | Starting from Arc length $CD = R\theta$ | | | | | 1 | Arrive upto Linear strain = r/R | 1 | | | | - 1 | | | | | | | Using $Y = \frac{\text{longitudinal stress}}{\text{longitudinal strain}}$ | | | | | | | | | | | | Arrive upto $F = \frac{YAr}{R}$ | 1 | | | | | | | 1 | | | | Again starting from Moment of force = $F \times its$ distance from neutral axis | | | | | - | A wive at Panding moment $-\frac{Y}{I}I$ | | | | | | Arrive at Bending moment = $\frac{Y}{R}I_g$ | 2 | | | | | Calculate the V-number for a fiber of core diameter 40µm and with | | 1 | | | | refractive indices of 1.55 and 1.50 respectively for core and cladding | | | | | (c) | when the wavelength of the propagating wave is 1400nm. Also | 5 | Applying | CO5 | | (c) | calculate the number of modes that the fiber can support for | 3 | K3 | 003 | | | propagation. Assume that the fiber is in air. | | | | | | Formula: | | - | | | | | 1 | | | | | $V = \frac{\pi d}{\lambda} \sqrt{n_1^2 - n_2^2}$ | | | | | Sol | ∴ V = 35 | 2 | | | | | Number of modes $\approx V^2/2$ | 1 | 1 | | | | ∴ Number of modes = 612 | 1 | | | | | PART-B | | | | | 3(a) | Derive the relation between K , η and Y . | 5 | Applying
K3 | CO4_ | | | Starting from $Y = 2\eta(1 + \sigma)$ | - | | - | | | Y Y | 1 | | | | Sol | Using $K = \frac{Y}{3(1-2\sigma)}$ | 1 | | | | | 9ηΚ | | | | | | Arrive upto $Y = \frac{9\eta K}{3K + \eta}$ | 3 | | | | | Calculate the torque required to twist a wire of length 1.5m, radius | | | | | (b) | 0.0425×10^{-2} m, through an angle ($\pi/45$) radian, if the value of rigidity | 5 | Applying | CO4 | | | modulus of its material is $8.3 \times 10^{10} \text{N/m}^2$. | | K3 | CO4 | | | Formula: | | + | | | | | 1 | | | | | $C = \frac{\pi \eta R^4}{2L}$ | 1 | | | | Sol | $\therefore C = 2.836 \times 10^{-3}$ | 1 | | | | | $\tau = C\theta$ | | | | | | $\therefore \tau = 1.98 \times 10^{-4} \text{Nm}$ | 1 | | | | | 1.36X.U NM | 2 | | | | (c) | Discuss the point to point communication using an optical fiber with the | 5 | Understand | CO5 | |------|--|--------------------|---------------------------------------|-----| | (c) | help of a block diagram. | 3 | K2 | | | Sol | Block Diagram | 2 | | | | 301 | Explanation | 3 | | | | | OR | , , , , | · · · · · · · · · · · · · · · · · · · | | | 4(a) | Derive an expression for couple per unit twist of a solid cylinder. | 5 | Applying
K3 | CO4 | | | Diagram | | | | | | | 1 | | | | | Starting from $\angle BXB' = \phi$ | | | | | | Arrive upto $\phi = r\theta/L$ | 1 | | | | Sol | Using A = $2\pi rdr$ and η = shearing stress/shearing strain | 1 | | | | 301 | Arrive upto Moment of force = $\frac{2\pi\eta\theta}{L} r^3 dr$ | | | | | | L L L | | | | | | $ar=R 2\pi n\theta$ | | 1 | | | • | Again starting from twisting couple = $\int_{r=0}^{r=R} \frac{2\pi\eta\theta}{L} r^3 dr$ | 2 | | | | | Arrive upto $C = \frac{\pi \eta R^4}{2L}$ | | | | | | Calculate the extension produced in a wire of length 2m and radius | | | | | (b) | 0.013x10 ⁻² m due to a force of 14.7N applied along its length. | 5 | Applying | CO4 | | (-) | Given, Y=2.1x10 ¹¹ N/m ² | J | K3 | CO4 | | - | Formula: | | | | | | $A = \pi r^2$ | 2 | | | | ٥, | $\therefore A = 5.31 \times 10^{-8} \text{m}^2$ | | | | | Sol | | 2 | | | | | $\Delta L = \frac{FL}{AY}$ | | | | | | $\therefore \Delta L = 2.6 \times 10^{-3} \text{m}$ | 1 | | | | (c) | Explain the different types of optical fibers with suitable diagrams. | 5 | Understand
K2 | CO5 | | | 3 types of optical fibers | | 8.00 | | | Sol | Diagram | 2 | 1 m | | | | Explanation for each type of optical fiber | 3 | | | Course In charge Head - Dept Principal K. Rosa &